Hartshorne's conjecture on Vector Bundles #
Reference: Varieties of small codimension in projective space by R. Hartshorne
structure
HartshorneConjecture.AlgebraicGeometry.Scheme.VectorBundles
(S : AlgebraicGeometry.Scheme)
:
Type 1
A vector bundle over a scheme S
is a locally free 𝓞_S
-module of finite rank.
- carrier : S.Modules
- rank : ℕ
- isLocallyFreeFiniteConstantRank : SheafOfModules.IsVectorBundleWithRank self.carrier self.rank
Instances For
instance
HartshorneConjecture.AlgebraicGeometry.Scheme.instCoeVectorBundlesModules
(S : AlgebraicGeometry.Scheme)
:
Coe (VectorBundles S) S.Modules
Equations
instance
HartshorneConjecture.AlgebraicGeometry.Scheme.instCategoryVectorBundles
(S : AlgebraicGeometry.Scheme)
:
Vector bundles form a category.
def
HartshorneConjecture.AlgebraicGeometry.Scheme.VectorBundles.toModule
(S : AlgebraicGeometry.Scheme)
:
Equations
- One or more equations did not get rendered due to their size.
Instances For
structure
HartshorneConjecture.AlgebraicGeometry.Scheme.VectorBundles.Splitting
{S : AlgebraicGeometry.Scheme}
(𝓕 : VectorBundles S)
(ι : Type)
[Fintype ι]
[Nonempty ι]
:
Type 1
A splitting of a vector bundle 𝓕
is a non-trivial direct sum decomposition of 𝓕
- components : ι → VectorBundles S
- non_trivial (i : ι) : IsEmpty (self.components i ≅ 𝓕)
Instances For
instance
HartshorneConjecture.AlgebraicGeometry.Scheme.instCoeOutSplittingForallVectorBundles
{S : AlgebraicGeometry.Scheme}
(𝓕 : VectorBundles S)
(ι : Type)
[Fintype ι]
[Nonempty ι]
:
CoeOut (𝓕.Splitting ι) (ι → VectorBundles S)
Equations
- HartshorneConjecture.AlgebraicGeometry.Scheme.instCoeOutSplittingForallVectorBundles 𝓕 ι = { coe := fun (s : 𝓕.Splitting ι) => s.components }
theorem
HartshorneConjecture.harthshorne_conjecture
(n : ℕ)
(hn : 7 ≤ n)
(𝓕 : AlgebraicGeometry.Scheme.VectorBundles (ProjectiveSpace (Fin (n + 1)) (AlgebraicGeometry.Spec (CommRingCat.of ℂ))))
(h𝓕 : 𝓕.rank = 2)
:
There are no indecomposable vector bundles of rank 2 on ℙⁿ
for n ≥ 7
.
This is conjecture 6.3 in VARIETIES OF SMALL CODIMENSION IN PROJECTIVE SPACE, R. Hartshorne