structure
SheafOfModules.VectorBundleData
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{R : CategoryTheory.Sheaf J RingCat}
[∀ (X : C), (J.over X).HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrp)]
[∀ (X : C), CategoryTheory.HasWeakSheafify (J.over X) AddCommGrp]
[∀ (X : C), (J.over X).WEqualsLocallyBijective AddCommGrp]
(M : SheafOfModules R)
:
Type (max (u + 1) (v + 1))
A vector bundle is a sheaf of modules that is locally isomorphic to a free sheaf.
- OpensIndex : Type u
The index type for the open cover on which the vector bundle is free.
- opens : self.OpensIndex → C
The indexed family of opens on which the vector bundle is free.
The indexed family of opens covers the base.
- BasisIndex : self.OpensIndex → Type v
The indexed family of types that index local bases for the vector bundle.
The restriction of the vector bundle to one of the opens is free.
Instances For
structure
SheafOfModules.FiniteRankVectorBundleData
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{R : CategoryTheory.Sheaf J RingCat}
[∀ (X : C), (J.over X).HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrp)]
[∀ (X : C), CategoryTheory.HasWeakSheafify (J.over X) AddCommGrp]
[∀ (X : C), (J.over X).WEqualsLocallyBijective AddCommGrp]
(M : SheafOfModules R)
extends M.VectorBundleData :
Type (max (u + 1) (v + 1))
- OpensIndex : Type u
- opens : self.OpensIndex → C
- BasisIndex : self.OpensIndex → Type v
- finite (i : self.OpensIndex) : Finite (self.BasisIndex i)
The predicate that every local basis in the defining data of the vector bundle is finite.
Instances For
class
SheafOfModules.IsVectorBundleWithRank
{C : Type u}
[CategoryTheory.Category.{v, u} C]
{J : CategoryTheory.GrothendieckTopology C}
{R : CategoryTheory.Sheaf J RingCat}
[∀ (X : C), (J.over X).HasSheafCompose (CategoryTheory.forget₂ RingCat AddCommGrp)]
[∀ (X : C), CategoryTheory.HasWeakSheafify (J.over X) AddCommGrp]
[∀ (X : C), (J.over X).WEqualsLocallyBijective AddCommGrp]
(M : SheafOfModules R)
(n : ℕ)
:
A class for vector bundles of constant finite rank.
- exists_vector_bundle_data : ∃ (D : M.FiniteRankVectorBundleData), ∀ (i : D.OpensIndex), Nat.card (D.BasisIndex i) = n
The predicate that a sheaf of modules is locally free.