Documentation

FormalConjectures.ErdosProblems.«442»

Erdős Problem 442 #

Reference: erdosproblems.com/442

noncomputable def Erdos442.Real.maxLogOne (x : ) :

The function $\operatorname{Log} x := \max\{log x, 1\}$.

Equations
Instances For
    @[reducible, inline]

    If A be a set of natural numbers and let x be real, then A.bddProdUpper x is the finite upper-triangular set of pairs of elements of A that are ≤ x. Specifically, it is the set {(n, m) | n ∈ A, n ≤ x, m ∈ A, m ≤ x, n < m}

    Equations
    Instances For
      theorem Erdos442.erdos_442 :
      (∀ (A : Set ), Filter.Tendsto (fun (x : ) => 1 / Real.maxLogOne (Real.maxLogOne x) * n(A.interIcc 1 x⌋₊).toFinset, 1 / n) Filter.atTop Filter.atTopFilter.Tendsto (fun (x : ) => 1 / (∑ n(A.interIcc 1 x⌋₊).toFinset, 1 / n) ^ 2 * nm(Set.bddProdUpper A x).toFinset, 1 / (nm.1.lcm nm.2)) Filter.atTop Filter.atTop) True

      Let $\operatorname{Log} x := \max\{\log x, 1\}$, $\operatorname{Log}_2x = \operatorname{Log} (\operatorname{Log} x)$, and $\operatorname{Log}_3x = \operatorname{Log}(\operatorname{Log}(\operatorname{Log} x)).$ Is it true that if $A\subseteq\mathbb{N}$ is such that $$ \frac{1}{\operatorname{Log}_2 x} \sum_{n\in A: n\leq x} \frac{1}{n}\to\infty $$ then $$ \left(\sum_{n\in A: n\leq x} \frac{1}{n}\right)^2 \sum_{n, m \in A: n < m \leq x} \frac{1}{\operatorname{lcm}(n, m)}\to\infty $$ as $x\to\infty$?

      Tao [Ta24b] has shown this is false.

      [Ta24b] Tao, T., Dense sets of natural numbers with unusually large least common multiples. arXiv:2407.04226 (2024).

      Note: the informal and formal statements follow the solution paper https://arxiv.org/pdf/2407.04226

      theorem Erdos442.erdos_442.variants.tao :
      ∃ (A : Set ) (f : ) (C : ) (_ : 0 < C) (_ : f =o[Filter.atTop] 1), ∀ (x : ), n(A.interIcc 1 x⌋₊).toFinset, 1 / n = Real.exp ((1 / 2 + f x) * (Real.maxLogOne (Real.maxLogOne x)) * Real.maxLogOne (Real.maxLogOne (Real.maxLogOne x))) |nm(A.interIcc 1 x⌋₊ ×ˢ A.interIcc 1 x⌋₊).toFinset, 1 / (nm.1.lcm nm.2)| C * (∑ n(A.interIcc 1 x⌋₊).toFinset, 1 / n) ^ 2

      Tao resolved erdos_442 in the negative in Theorem 1 of https://arxiv.org/pdf/2407.04226. The following is a formalisation of that theorem with $C_0 = 1$.

      Let $\operatorname{Log} x := \max\{\log x, 1\}$, $\operatorname{Log}_2x = \operatorname{Log} (\operatorname{Log} x)$, and $\operatorname{Log}_3x = \operatorname{Log}(\operatorname{Log}(\operatorname{Log} x)).$ There exists a set $A$ of natural numbers such that $$ \sum_{n\in A: n\leq x} \frac{1}{n} = \exp\left(\left(\left(\frac{1}{2} + o(1)\right)\operatorname{Log}_2^{1/2}x \operatorname{Log}_3x\right)\right) $$ and $$ \sum_{n, m\in A: n, m\leq x} \frac{1}{\operatorname{lcm}(n, m)}\ll\left(\sum_{n\in A: n\leq x} \frac{1}{n}\right)^2 $$