Documentation

FormalConjectures.ErdosProblems.«442»

Erdős Problem 442 #

Reference: erdosproblems.com/442

The function $\operatorname{Log} x := \max\{log x, 1\}$.

Equations
Instances For
    theorem erdos_442 :
    (∀ (A : Set ), Filter.Tendsto (fun (x : ) => 1 / x.maxLogOne.maxLogOne * nSet.bdd✝ A x, 1 / n) Filter.atTop Filter.atTopFilter.Tendsto (fun (x : ) => 1 / (∑ nSet.bdd✝ A x, 1 / n) ^ 2 * nmSet.bddProdUpper✝ A x, 1 / (nm.1.lcm nm.2)) Filter.atTop Filter.atTop) True

    Let $\operatorname{Log} x := \max\{\log x, 1\}$, $\operatorname{Log}_2x = \operatorname{Log} (\operatorname{Log} x)$, and $\operatorname{Log}_3x = \operatorname{Log}(\operatorname{Log}(\operatorname{Log} x)).$ Is it true that if $A\subseteq\mathbb{N}$ is such that $$ \frac{1}{\operatorname{Log}_2 x} \sum_{n\in A: n\leq x} \frac{1}{n}\to\infty $$ then $$ \left(\sum_{n\in A: n\leq x} \frac{1}{n}\right)^2 \sum_{n, m \in A: n < m \leq x} \frac{1}{\operatorname{lcm}(n, m)}\to\infty $$ as $x\to\infty$?

    Tao [Ta24b] has shown this is false.

    [Ta24b] Tao, T., Dense sets of natural numbers with unusually large least common multiples. arXiv:2407.04226 (2024).

    Note: the informal and formal statements follow the solution paper https://arxiv.org/pdf/2407.04226

    theorem erdos_442.variants.tao :
    ∃ (A : Set ) (f : ) (C : ) (_ : 0 < C) (_ : Filter.Tendsto f Filter.atTop (nhds 0)), ∀ (x : ), nSet.bdd✝ A x, 1 / n = Real.exp ((1 / 2 + f x) * x.maxLogOne.maxLogOne * x.maxLogOne.maxLogOne.maxLogOne) |nmSet.bdd✝ A x ×ˢ Set.bdd✝ A x, 1 / (nm.1.lcm nm.2)| C * (∑ nSet.bdd✝ A x, 1 / n) ^ 2

    Tao resolved erdos_442 in the negative in Theorem 1 of https://arxiv.org/pdf/2407.04226. The following is a formalisation of that theorem with $C_0 = 1$.

    Let $\operatorname{Log} x := \max\{\log x, 1\}$, $\operatorname{Log}_2x = \operatorname{Log} (\operatorname{Log} x)$, and $\operatorname{Log}_3x = \operatorname{Log}(\operatorname{Log}(\operatorname{Log} x)).$ There exists a set $A$ of natural numbers such that $$ \sum_{n\in A: n\leq x} \frac{1}{n} = \exp\left(\left(\left(\frac{1}{2} + o(1)\right)\operatorname{Log}_2^{1/2}x \operatorname{Log}_3x\right)\right) $$ and $$ \sum_{n, m\in A: n, m\leq x} \frac{1}{\operatorname{lcm}(n, m)}\ll\left(\sum_{n\in A: n\leq x} \frac{1}{n}\right)^2 $$