Documentation

FormalConjectures.ForMathlib.Data.Set.Bdd

@[reducible, inline]
abbrev Set.interIio {β : Type u_1} [Preorder β] (S : Set β) (b : β) :
Set β

Given a set S and an element b in an order β, Set.interIio S b A is the intersection S ∩ Iio b.

Equations
Instances For
    @[reducible, inline]
    abbrev Set.interIcc {β : Type u_1} [Preorder β] [OrderBot β] (S : Set β) (a b : β) :
    Set β

    Given a set S and elements a and b in an order β, Set.interIcc S a b is the intersection S ∩ Icc a b.

    Equations
    Instances For
      theorem Set.finite_interIio {β : Type u_1} [Preorder β] {S : Set β} {b : β} [LocallyFiniteOrderBot β] :
      theorem Set.finite_interIcc {β : Type u_1} [Preorder β] {S : Set β} {a b : β} [LocallyFiniteOrder β] [OrderBot β] :
      noncomputable instance instFintypeElemInterIccOfLocallyFiniteOrder {β : Type u_1} [Preorder β] (S : Set β) (a b : β) [LocallyFiniteOrder β] [OrderBot β] :
      Fintype (S.interIcc a b)
      Equations
      @[simp]
      theorem Set.interIio_univ {β : Type u_1} [Preorder β] (b : β) :
      @[simp]
      theorem Set.interIio_univ' {β : Type u_1} [Preorder β] (b : β) :
      @[simp]
      theorem Set.interIio_empty {β : Type u_1} [Preorder β] (b : β) :
      theorem Set.interIio_mono {β : Type u_1} [Preorder β] {S T : Set β} (h : S T) (b : β) :