Documentation

FormalConjectures.ErdosProblems.«44»

Erdős Problem 44: Extending Sidon Sets #

Reference: erdosproblems.com/44

The maximum size of a Sidon set in {1, ..., N} is less than or equal to 2 * √N.

theorem Erdos44.erdos_44 :
(∀ N1, AFinset.Icc 1 N, IsSidon Aε > 0, M > N, BFinset.Icc (N + 1) M, IsSidon (A B) (1 - ε) * M (A B).card) sorry

Erdős Problem 44: Let N ≥ 1 and A ⊆ {1,…,N} be a Sidon set. Is it true that, for any ε > 0, there exist M = M(ε) and B ⊆ {N+1,…,M} such that A ∪ B ⊆ {1,…,M} is a Sidon set of size at least (1−ε)M^{1/2}?

This problem asks whether any Sidon set can be extended to achieve a density arbitrarily close to the optimal density for Sidon sets.

theorem Erdos44.erdos_44.variant :
(∀ N1, AFinset.Icc 1 N, IsSidon Aε > 0, MN, BFinset.Icc (N + 1) M, IsSidon (A B) (1 - ε) * M (A B).card) sorry

A variant considering the extension to any larger range.

theorem Erdos44.erdos_44.empty_start :
(∀ ε > 0, ∃ (M : ), AFinset.Icc 1 M, IsSidon A (1 - ε) * M A.card) sorry

The case where we start with an empty set (constructing large Sidon sets).

theorem Erdos44.erdos_44.constructive :
(∃ (f : ), N1, AFinset.Icc 1 N, IsSidon Aε > 0, Mf ε, BFinset.Icc (N + 1) M, N < M IsSidon (A B) (1 - ε) * M (A B).card) sorry

A constructive version asking for explicit bounds on M in terms of ε.

The set {1, 2, 4, 8, 13} is a Sidon set in {1, ..., 13}.

theorem Erdos44.sidon_set_lower_bound (N : ) (hN : 1 N) :
AFinset.Icc 1 N, IsSidon A N.sqrt / 2 A.card

For any N, there exists a Sidon set of size at least √N/2.

theorem Erdos44.greedy_sidon_construction (N : ) (hN : 1 N) :
AFinset.Icc 1 N, IsSidon A A.card N.sqrt

The greedy construction gives a Sidon set of size approximately √N.