A Sidon sequence (also called a Sidon set) is a sequence of natural numbers $a_0, a_1, ...$ such that all pairwise sums $a_i + a_j$ are distinct for $i ≤ j$.
In other words, all pairwise sums of elements are distinct apart from coincidences forced by the commutativity of addition.
Equations
Instances For
theorem
Set.IsAPOfLength.card
{α : Type u_1}
[AddCommMonoid α]
(s : Set α)
(l : ℕ∞)
(hs : s.IsAPOfLength l)
:
theorem
IsSidon.avoids_isAPOfLength_three
{α : Type u_2}
[OrderedAddCommMonoid α]
(A : ℕ →o α)
(hA : IsSidon A)
(Y : Set α)
:
Y.IsAPOfLength 3 → (Set.range ⇑A ∩ Y).ncard ≤ 2