Documentation

FormalConjectures.ErdosProblems.«329»

Erdős Problem 329: Maximum Density of Sidon Sets #

Reference: erdosproblems.com/329

noncomputable def Erdos329.sqrtPartialDensity (A : Set ) (N : ) :

The partial density of a Sidon set A up to N, normalized by dividing by √N instead of N. This measures how close the set comes to the optimal density for Sidon sets.

Equations
Instances For
    noncomputable def Erdos329.sidonUpperDensity (A : Set ) :

    The upper density of a Sidon set A, normalized by √N.

    Equations
    Instances For
      theorem Erdos329.erdos_329 :
      sSup {x : | ∃ (A : Set ) (_ : IsSidon A), sidonUpperDensity A = x} = sorry

      Erdős Problem 329. Let A ⊆ ℕ be a Sidon set. How large can lim sup_{N → ∞} |A ∩ {1,…,N}| / N^{1/2} be?

      Erdős proved that upper density 1 / 2 can be attained; in particular, there exists a Sidon set whose upper density is at least 1 / 2.

      Krückeberg ([Kr61]) exhibited an infinite Sidon set A with sidonUpperDensity A = 1 / Real.sqrt 2, improving Erdős’ earlier 1 / 2 lower bound.

      [Kr61] Krückeberg, Fritz, $B\sb{2}$-Folgen und verwandte Zahlenfolgen. J. Reine Angew. Math. (1961), 53-60.

      Erdős and Turán [ErTu41] proved the upper bound of 1.

      [ErTu41] Erdős, P. and Turán, P., On a problem of Sidon in additive number theory, and on some related problems. J. London Math. Soc. (1941), 212-215.

      A perfect difference set modulo n is a set D such that the map (a, b) ↦ a - b from D.offDiag to {x : ZMod n | x ≠ 0} is a bijection.

      Equations
      Instances For
        theorem Erdos329.erdos_329.of_sub_perfectDifferenceSet :
        (∀ (A : Finset ), IsSidon A∃ (D : Set ) (n : ), A D IsPerfectDifferenceSet D n)sSup {x : | ∃ (A : Set ) (_ : IsSidon A), sidonUpperDensity A = x} = 1

        If any finite Sidon set can be embedded in a perfect difference set, then the maximum density would be 1.

        theorem Erdos329.erdos_329.converse_implication :
        sSup {x : | ∃ (A : Set ) (_ : IsSidon A), sidonUpperDensity A = x} = 1∀ (A : Finset ), IsSidon A∃ (D : Set ) (n : ), A D IsPerfectDifferenceSet D n

        The converse: if the maximum density is 1, then any finite Sidon set can be embedded in a perfect difference set.

        theorem Erdos329.squares_are_sidon :
        IsSidon {x : | ∃ (n : ), n ^ 2 = x}

        The set of squares {n^2 | n : ℕ} is a Sidon set.

        The set of squares has upper density 0.

        It is possible to construct a Sidon set with positive density.