theorem
Multipliable.prod_le_tprod_set
{ι : Type u_1}
{α : Type u_2}
[PartialOrder α]
[CommGroup α]
[IsOrderedMonoid α]
[UniformSpace α]
[IsUniformGroup α]
[CompleteSpace α]
[OrderClosedTopology α]
{f : ι → α}
{s : Finset ι}
{t : Set ι}
(hst : ↑s ⊆ t)
(hfst : ∀ i ∉ s, i ∈ t → 1 ≤ f i)
(hf : Multipliable f)
:
theorem
Summable.sum_le_tsum_set
{ι : Type u_1}
{α : Type u_2}
[PartialOrder α]
[AddCommGroup α]
[IsOrderedAddMonoid α]
[UniformSpace α]
[IsUniformAddGroup α]
[CompleteSpace α]
[OrderClosedTopology α]
{f : ι → α}
{s : Finset ι}
{t : Set ι}
(hst : ↑s ⊆ t)
(hfst : ∀ i ∉ s, i ∈ t → 0 ≤ f i)
(hf : Summable f)
: