Documentation

FormalConjecturesForMathlib.SetTheory.Cardinal.Arithmetic

@[simp]
theorem Cardinal.aleph0_le_mk_set {α : Type u_1} {s : Set α} :
@[simp]
theorem Cardinal.mk_diff_eq_left' {α : Type u_1} {s t : Set α} (hs : s.Infinite) (hst : mk ↑(s t) < mk s) :
mk ↑(s \ t) = mk s
@[simp]
theorem Cardinal.mk_diff_eq_left {α : Type u_1} {s t : Set α} (hs : s.Infinite) (hts : mk t < mk s) :
mk ↑(s \ t) = mk s
@[simp]
theorem Cardinal.mk_diff_eq_left_of_finite' {α : Type u_1} {s t : Set α} (hs : s.Infinite) (hst : (s t).Finite) :
mk ↑(s \ t) = mk s
@[simp]
theorem Cardinal.mk_diff_eq_left_of_finite {α : Type u_1} {s t : Set α} (hs : s.Infinite) (ht : t.Finite) :
mk ↑(s \ t) = mk s