Documentation
FormalConjecturesForMathlib
.
SetTheory
.
Cardinal
.
Arithmetic
Search
return to top
source
Imports
Init
Mathlib.SetTheory.Cardinal.Arithmetic
Imported by
Cardinal
.
aleph0_le_mk_set
Cardinal
.
mk_diff_eq_left'
Cardinal
.
mk_diff_eq_left
Cardinal
.
mk_diff_eq_left_of_finite'
Cardinal
.
mk_diff_eq_left_of_finite
source
@[simp]
theorem
Cardinal
.
aleph0_le_mk_set
{
α
:
Type
u_1}
{
s
:
Set
α
}
:
aleph0
≤
mk
↑
s
↔
s
.
Infinite
source
@[simp]
theorem
Cardinal
.
mk_diff_eq_left'
{
α
:
Type
u_1}
{
s
t
:
Set
α
}
(
hs
:
s
.
Infinite
)
(
hst
:
mk
↑(
s
∩
t
)
<
mk
↑
s
)
:
mk
↑(
s
\
t
)
=
mk
↑
s
source
@[simp]
theorem
Cardinal
.
mk_diff_eq_left
{
α
:
Type
u_1}
{
s
t
:
Set
α
}
(
hs
:
s
.
Infinite
)
(
hts
:
mk
↑
t
<
mk
↑
s
)
:
mk
↑(
s
\
t
)
=
mk
↑
s
source
@[simp]
theorem
Cardinal
.
mk_diff_eq_left_of_finite'
{
α
:
Type
u_1}
{
s
t
:
Set
α
}
(
hs
:
s
.
Infinite
)
(
hst
:
(
s
∩
t
).
Finite
)
:
mk
↑(
s
\
t
)
=
mk
↑
s
source
@[simp]
theorem
Cardinal
.
mk_diff_eq_left_of_finite
{
α
:
Type
u_1}
{
s
t
:
Set
α
}
(
hs
:
s
.
Infinite
)
(
ht
:
t
.
Finite
)
:
mk
↑(
s
\
t
)
=
mk
↑
s