Documentation

FormalConjecturesForMathlib.Data.Nat.Init

@[simp]
theorem Nat.dvd_add_mul_self {a b c : } :
a b + c * a a b
@[simp]
theorem Nat.dvd_add_self_mul {a b c : } :
a b + a * c a b
@[simp]
theorem Nat.dvd_mul_self_add {a b c : } :
a b * a + c a c
@[simp]
theorem Nat.dvd_self_mul_add {a b c : } :
a a * b + c a c
@[simp]
theorem Nat.dvd_sub_iff_right' {a b c : } (hab : a b) :
a b - c a c b c
@[simp]
theorem Nat.dvd_sub_iff_left' {a b c : } (hac : a c) :
a b - c a b b c
@[simp]
theorem Nat.dvd_sub_mul_self {a b c : } :
a b - c * a a b b c * a
@[simp]
theorem Nat.dvd_sub_self_mul {a b c : } :
a b - a * c a b b c * a
@[simp]
theorem Nat.dvd_mul_self_sub {a b c : } :
a b * a - c a c b * a c
@[simp]
theorem Nat.dvd_self_mul_sub {a b c : } :
a a * b - c a c b * a c