Documentation
FormalConjecturesForMathlib
.
Data
.
Nat
.
Init
Search
return to top
source
Imports
Init
Mathlib.Data.Nat.Init
Imported by
Nat
.
dvd_add_mul_self
Nat
.
dvd_add_self_mul
Nat
.
dvd_mul_self_add
Nat
.
dvd_self_mul_add
Nat
.
dvd_sub_iff_right'
Nat
.
dvd_sub_iff_left'
Nat
.
dvd_sub_mul_self
Nat
.
dvd_sub_self_mul
Nat
.
dvd_mul_self_sub
Nat
.
dvd_self_mul_sub
source
@[simp]
theorem
Nat
.
dvd_add_mul_self
{
a
b
c
:
ℕ
}
:
a
∣
b
+
c
*
a
↔
a
∣
b
source
@[simp]
theorem
Nat
.
dvd_add_self_mul
{
a
b
c
:
ℕ
}
:
a
∣
b
+
a
*
c
↔
a
∣
b
source
@[simp]
theorem
Nat
.
dvd_mul_self_add
{
a
b
c
:
ℕ
}
:
a
∣
b
*
a
+
c
↔
a
∣
c
source
@[simp]
theorem
Nat
.
dvd_self_mul_add
{
a
b
c
:
ℕ
}
:
a
∣
a
*
b
+
c
↔
a
∣
c
source
@[simp]
theorem
Nat
.
dvd_sub_iff_right'
{
a
b
c
:
ℕ
}
(
hab
:
a
∣
b
)
:
a
∣
b
-
c
↔
a
∣
c
∨
b
≤
c
source
@[simp]
theorem
Nat
.
dvd_sub_iff_left'
{
a
b
c
:
ℕ
}
(
hac
:
a
∣
c
)
:
a
∣
b
-
c
↔
a
∣
b
∨
b
≤
c
source
@[simp]
theorem
Nat
.
dvd_sub_mul_self
{
a
b
c
:
ℕ
}
:
a
∣
b
-
c
*
a
↔
a
∣
b
∨
b
≤
c
*
a
source
@[simp]
theorem
Nat
.
dvd_sub_self_mul
{
a
b
c
:
ℕ
}
:
a
∣
b
-
a
*
c
↔
a
∣
b
∨
b
≤
c
*
a
source
@[simp]
theorem
Nat
.
dvd_mul_self_sub
{
a
b
c
:
ℕ
}
:
a
∣
b
*
a
-
c
↔
a
∣
c
∨
b
*
a
≤
c
source
@[simp]
theorem
Nat
.
dvd_self_mul_sub
{
a
b
c
:
ℕ
}
:
a
∣
a
*
b
-
c
↔
a
∣
c
∨
b
*
a
≤
c