Documentation

FormalConjecturesForMathlib.Combinatorics.SimpleGraph.Coloring

theorem SimpleGraph.le_chromaticNumber_iff_colorable {V : Type u_1} {G : SimpleGraph V} {n : } :
n G.chromaticNumber ∀ (m : ), G.Colorable mn m
theorem SimpleGraph.le_chromaticNumber_iff_coloring {V : Type u_1} {G : SimpleGraph V} {n : } :
n G.chromaticNumber ∀ (m : ) (a : G.Coloring (Fin m)), n m
theorem SimpleGraph.Coloring.injective_comp_of_pairwise_adj {V : Type u_1} {α : Type u_2} {ι : Type u_3} {G : SimpleGraph V} (C : G.Coloring α) (f : ιV) (hf : Pairwise fun (i j : ι) => G.Adj (f i) (f j)) :
theorem SimpleGraph.Colorable.card_le_of_pairwise_adj {V : Type u_1} {ι : Type u_3} {G : SimpleGraph V} {n : } (hG : G.Colorable n) (f : ιV) (hf : Pairwise fun (i j : ι) => G.Adj (f i) (f j)) :
theorem SimpleGraph.le_chromaticNumber_of_pairwise_adj {V : Type u_1} {ι : Type u_3} {G : SimpleGraph V} {n : } (hn : n Nat.card ι) (f : ιV) (hf : Pairwise fun (i j : ι) => G.Adj (f i) (f j)) :
instance SimpleGraph.instIsSymmAdj_formalConjecturesForMathlib {V : Type u_1} {ι : Type u_3} {G : SimpleGraph V} (f : ιV) :
IsSymm ι fun (i j : ι) => G.Adj (f i) (f j)
def SimpleGraph.IsCriticalEdges {V : Type u_1} (G : SimpleGraph V) (edges : Set (Sym2 V)) :

A set of edges is critical if deleting them reduces the chromatic number.

Equations
Instances For
    def SimpleGraph.IsCriticalEdge {V : Type u_1} (G : SimpleGraph V) (e : Sym2 V) :

    An edge is critical if deleting it reduces the chromatic number.

    Equations
    Instances For
      def SimpleGraph.Subgraph.IsCriticalVerts {V : Type u_1} {G : SimpleGraph V} (verts : Set V) (G' : G.Subgraph) :

      A set of vertices is critical if deleting them reduces the chromatic number.

      Equations
      Instances For
        def SimpleGraph.Subgraph.IsCriticalVertex {V : Type u_1} {G : SimpleGraph V} (v : V) (G' : G.Subgraph) :

        A vertex is critical if deleting it reduces the chromatic number.

        Equations
        Instances For
          def SimpleGraph.IsCritical {V : Type u_1} (G : SimpleGraph V) (k : ) :

          A graph G is k-critical (or vertex-critical) if its chromatic number is k, and deleting any single vertex reduces the chromatic number.

          Equations
          Instances For
            theorem SimpleGraph.colorable_iff_induce_eq_bot {V : Type u_1} (G : SimpleGraph V) (n : ) :
            G.Colorable n ∃ (coloring : VFin n), ∀ (i : Fin n), induce {v : V | coloring v = i} G =
            def SimpleGraph.Cocolorable {V : Type u_1} (G : SimpleGraph V) (n : ) :
            Equations
            Instances For
              noncomputable def SimpleGraph.cochromaticNumber {V : Type u_1} (G : SimpleGraph V) :

              The chromatic number of a graph is the minimal number of colors needed to color it. This is (infinity) iff G isn't colorable with finitely many colors.

              If G is colorable, then ENat.toNat G.chromaticNumber is the -valued chromatic number.

              Equations
              Instances For
                noncomputable def SimpleGraph.chromaticCardinal {V : Type u} (G : SimpleGraph V) :

                The chromatic cardinal is the minimal number of colors need to color it. In contrast to chromaticNumber, which assigns ⊤ : ℕ∞ to all non-finitely colorable graphs, this definition returns a Cardinal and can therefore distinguish between different infinite chromatic numbers.

                Equations
                Instances For