Documentation

FormalConjectures.Wikipedia.SchanuelsConjecture

Schanuel's Conjecture #

Reference: Wikipedia

@[reducible, inline]
abbrev transcendenceDegree (R : Type u_1) {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (h : Function.Injective ⇑(algebraMap R A)) :

The transcendence degree of an $A$-algebra is the common cardinality of transcendence bases.

Equations
Instances For
    theorem isTranscendenceBasis_ncard_eq_transcendenceDegree (R : Type u_1) {A : Type u_2} {ι : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (h : Function.Injective ⇑(algebraMap R A)) (š’· : ι → A) (hS : IsTranscendenceBasis R š’·) :

    The transcendence degree is independent of the choice of a transcendence basis.

    theorem adjoin_transcendenceDegree_le_of_finite {A : Type u_1} {ι : Type u_2} [Field A] {S : Set A} (hS : S.Finite) :

    The transcendence degree of $A$ adjoined $\{x_1, ..., x_n\}$ is $\leq n$.

    theorem schanuels_conjecture (n : ā„•) (z : Fin n → ā„‚) (h : LinearIndependent ā„š z) :
    let hinj := ⋯; n ≤ transcendenceDegree ā„š hinj

    Given any set of $n$ complex numbers $\{z_1, ..., z_n\}$ that are linearly independent over $\mathbb{Q}$, the field extension $\mathbb{Q}(z_1, ..., z_n, e^{z_1}, ..., e^{z_n})$ has transcendence degree at least $n$ over $\mathbb{Q}$.

    Consequences of Schanuel's conjecture #

    theorem four_exponentials {z₁ zā‚‚ w₁ wā‚‚ : ā„‚} (hz : LinearIndependent ā„š ![z₁, zā‚‚]) (hw : LinearIndependent ā„š ![w₁, wā‚‚]) :
    ∃ z ∈ {Complex.exp (z₁ * w₁), Complex.exp (z₁ * wā‚‚), Complex.exp (zā‚‚ * w₁), Complex.exp (zā‚‚ * wā‚‚)}, Transcendental ā„š z

    The four exponentials conjecture would follow from Schanuel's conjecture: if $z_2, z_2$ and $w_1, w_2$ are two pairs of complex numbers, with each pair being linearly independent over the rational numbers, then at least one of the following four numbers is transcendental $$ e^{z_1w_1}, e^{z_1w_2}, e^{z_2w_1}, e^{z_2w_2}. $$

    The four exponential conjecture would imply that for any irrational number $t$, at least one of the numbers $2^t$ and $3^t$ is transcendental.

    A number of nontrivial combinations of $e$, $\pi$ and elementary functions may also be proven to the transcendental should Schanuel's conjecture hold.

    $e + \pi$ is transcendental.

    $e^{\pi^2}$ is transcendental.

    $e^e$ is transcendental.

    $\pi^{\sqrt{2}}$ is transcendental.

    $\pi^{\pi}$ is transcendental.

    $\pi^{\pi^{\pi}}$ is transcendental.

    $\log(\pi)$ is transcendental.

    $\log(\log(2))$ is transcendental.

    $\sin(e)$ is transcendental.

    At least one of $\pi + e$ and $\pi e$ is transcendental.