Documentation

FormalConjectures.Wikipedia.Schanuel

Schanuel's Conjecture #

Reference: Wikipedia

@[reducible, inline]
noncomputable abbrev Schanuel.transcendenceDegree (R : Type u_1) {A : Type u_2} [CommRing R] [CommRing A] [Algebra R A] (h : Function.Injective (algebraMap R A)) :

The transcendence degree of an $A$-algebra is the common cardinality of transcendence bases.

Equations
Instances For
    theorem Schanuel.isTranscendenceBasis_ncard_eq_transcendenceDegree (R : Type u_1) {A : Type u_2} {ι : Type u_3} [CommRing R] [CommRing A] [Algebra R A] (h : Function.Injective (algebraMap R A)) (𝒷 : ιA) (hS : IsTranscendenceBasis R 𝒷) :

    The transcendence degree is independent of the choice of a transcendence basis.

    theorem Schanuel.adjoin_transcendenceDegree_le_of_finite {A : Type u_1} {ι : Type u_2} [Field A] {S : Set A} (hS : S.Finite) :

    The transcendence degree of $A$ adjoined $\{x_1, ..., x_n\}$ is $\leq n$.

    theorem Schanuel.schanuel_conjecture (n : ) (z : Fin n) (h : LinearIndependent z) :
    let hinj := ; n transcendenceDegree hinj

    Given any set of $n$ complex numbers $\{z_1, ..., z_n\}$ that are linearly independent over $\mathbb{Q}$, the field extension $\mathbb{Q}(z_1, ..., z_n, e^{z_1}, ..., e^{z_n})$ has transcendence degree at least $n$ over $\mathbb{Q}$.