@[reducible, inline]
noncomputable abbrev
Schanuel.transcendenceDegree
(R : Type u_1)
{A : Type u_2}
[CommRing R]
[CommRing A]
[Algebra R A]
(h : Function.Injective ⇑(algebraMap R A))
:
The transcendence degree of an $A$-algebra is the common cardinality of transcendence bases.
Equations
Instances For
theorem
Schanuel.isTranscendenceBasis_ncard_eq_transcendenceDegree
(R : Type u_1)
{A : Type u_2}
{ι : Type u_3}
[CommRing R]
[CommRing A]
[Algebra R A]
(h : Function.Injective ⇑(algebraMap R A))
(𝒷 : ι → A)
(hS : IsTranscendenceBasis R 𝒷)
:
The transcendence degree is independent of the choice of a transcendence basis.
theorem
Schanuel.schanuel_conjecture
(n : ℕ)
(z : Fin n → ℂ)
(h : LinearIndependent ℚ z)
:
let hinj := ⋯;
n ≤ transcendenceDegree ℚ hinj
Given any set of $n$ complex numbers $\{z_1, ..., z_n\}$ that are linearly independent over $\mathbb{Q}$, the field extension $\mathbb{Q}(z_1, ..., z_n, e^{z_1}, ..., e^{z_n})$ has transcendence degree at least $n$ over $\mathbb{Q}$.