Documentation

FormalConjectures.Wikipedia.RiemannZetaValues

Particular values of the Riemann zeta function #

Reference: Wikipedia

$\zeta(5)$ is irrational.

$\zeta(7)$ is irrational.

$\zeta(9)$ is irrational.

$\zeta(11)$ is irrational.

theorem RiemannZeta.irrational_odd (n : ) (hn : 0 < n) :
∃ (x : ), Irrational x riemannZeta (2 * n + 1) = x

$\zeta(2n + 1)$ is irrational for any $n\in\mathbb{N}^{+}$.

$\zeta(3)$ is irrational.

[Ap79] Apéry, R. (1979). Irrationalité de ζ(2) et ζ(3). Astérisque. 61: 11–13.

There are infinitely many $\zeta(2n + 1)$, $n \in \mathbb{N}$, that are irrational.

[Ri00] Rivoal, T. (2000). La fonction zeta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs. Comptes Rendus de l'Académie des Sciences, Série I. 331 (4): 267–270.

At least one of $\zeta(5), \zeta(7), \zeta(9)$ or $\zeta(11)$ is irrational.

[Zu01] W. Zudilin (2001). One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational. Russ. Math. Surv. 56 (4): 774–776.