Documentation

FormalConjectures.Wikipedia.Oppermann

Oppermann's Conjecture #

Reference: Wikipedia

theorem Oppermann.oppermann_conjecture.parts.i (x : ) (hx : 2 x) :
pFinset.Ioo (x * (x - 1)) (x ^ 2), Nat.Prime p

For every integer $x \ge 2$ there exists a prime between $x(x-1)$ and $x^2$.

theorem Oppermann.oppermann_conjecture.parts.ii (x : ) (hx : 2 x) :
pFinset.Ioo (x ^ 2) (x * (x + 1)), Nat.Prime p

For every integer $x \ge 2$ there exists a prime between $x^2$ and $x(x+1)$.

theorem Oppermann.oppermann_conjecture (x : ) (hx : 2 x) :
(∃ pFinset.Ioo (x * (x - 1)) (x ^ 2), Nat.Prime p) pFinset.Ioo (x ^ 2) (x * (x + 1)), Nat.Prime p

Oppermann's Conjecture: For every integer $x \ge 2$, the following hold:

  • There exists a prime between $x(x-1)$ and $x^2$.
  • There exists a prime between $x^2$ and $x(x+1)$.
theorem Oppermann.oppermann_implies_brocard (n : ) (hn : 1 n) (P : ∀ (x : ), 2 x(∃ pFinset.Ioo (x * (x - 1)) (x ^ 2), Nat.Prime p) pFinset.Ioo (x ^ 2) (x * (x + 1)), Nat.Prime p) :

Oppermann's conjecture implies Brocard's conjecture.

theorem Oppermann.oppermann_implies_legendre (n : ) (hn : 1 n) (P : ∀ (x : ), 2 x(∃ pFinset.Ioo (x * (x - 1)) (x ^ 2), Nat.Prime p) pFinset.Ioo (x ^ 2) (x * (x + 1)), Nat.Prime p) :
pFinset.Ioo (n ^ 2) ((n + 1) ^ 2), Nat.Prime p

Oppermann's conjecture implies Legendre's conjecture.