Documentation

FormalConjectures.Wikipedia.Oppermann

Oppermann's Conjecture #

Reference: Wikipedia

theorem Oppermann.oppermann_conjecture.parts.i (x : ) (hx : 2 x) :
pFinset.Ioo (x * (x - 1)) (x ^ 2), Nat.Prime p

For every integer x ≥ 2 there exists a prime between x(x-1) and .

theorem Oppermann.oppermann_conjecture.parts.ii (x : ) (hx : 2 x) :
pFinset.Ioo (x ^ 2) (x * (x + 1)), Nat.Prime p

For every integer x ≥ 2 there exists a prime between and x(x+1).

theorem Oppermann.oppermann_conjecture (x : ) (hx : 2 x) :
(∃ pFinset.Ioo (x * (x - 1)) (x ^ 2), Nat.Prime p) pFinset.Ioo (x ^ 2) (x * (x + 1)), Nat.Prime p

Oppermann's Conjecture: For every integer x ≥ 2, the following hold:

  • There exists a prime between x * (x-1) and x ^ 2.
  • There exists a prime between x ^ 2 and x * (x+1).
theorem Oppermann.oppermann_implies_brocard (n : ) (hn : 1 n) (P : ∀ (x : ), 2 x(∃ pFinset.Ioo (x * (x - 1)) (x ^ 2), Nat.Prime p) pFinset.Ioo (x ^ 2) (x * (x + 1)), Nat.Prime p) :

Oppermann's conjecture implies Brocard's conjecture.

theorem Oppermann.oppermann_implies_legendre (n : ) (hn : 1 n) (P : ∀ (x : ), 2 x(∃ pFinset.Ioo (x * (x - 1)) (x ^ 2), Nat.Prime p) pFinset.Ioo (x ^ 2) (x * (x + 1)), Nat.Prime p) :
pFinset.Ioo (n ^ 2) ((n + 1) ^ 2), Nat.Prime p

Oppermann's conjecture implies Legendre's conjecture.