theorem
Oppermann.oppermann_conjecture.parts.i
(x : ℕ)
(hx : 2 ≤ x)
:
∃ p ∈ Finset.Ioo (x * (x - 1)) (x ^ 2), Nat.Prime p
For every integer $x \ge 2$ there exists a prime between $x(x-1)$ and $x^2$.
theorem
Oppermann.oppermann_conjecture.parts.ii
(x : ℕ)
(hx : 2 ≤ x)
:
∃ p ∈ Finset.Ioo (x ^ 2) (x * (x + 1)), Nat.Prime p
For every integer $x \ge 2$ there exists a prime between $x^2$ and $x(x+1)$.
Oppermann's Conjecture: For every integer $x \ge 2$, the following hold:
- There exists a prime between $x(x-1)$ and $x^2$.
- There exists a prime between $x^2$ and $x(x+1)$.
theorem
Oppermann.oppermann_implies_legendre
(n : ℕ)
(hn : 1 ≤ n)
(P :
∀ (x : ℕ),
2 ≤ x → (∃ p ∈ Finset.Ioo (x * (x - 1)) (x ^ 2), Nat.Prime p) ∧ ∃ p ∈ Finset.Ioo (x ^ 2) (x * (x + 1)), Nat.Prime p)
:
∃ p ∈ Finset.Ioo (n ^ 2) ((n + 1) ^ 2), Nat.Prime p
Oppermann's conjecture implies Legendre's conjecture.