Documentation

FormalConjectures.Wikipedia.Mahler32

Mahler's 3/2 Problem #

Reference: Wikipedia

noncomputable def Mahler32.Ω (α : ) :

For a real number α, define Ω(α) as $$ \Omega (\alpha )=\inf _{\theta > 0}\left({\limsup _{n\rightarrow \infty }\left\lbrace {\theta \alpha ^{n}}\right\rbrace -\liminf _{n\rightarrow \infty }\left\lbrace {\theta \alpha ^{n}}\right\rbrace }\right). $$

Equations
Instances For

    A Z-number is a real number x such that the fractional parts of x(3/2)^n are less than 1/2 for all positive integers n.

    Equations
    Instances For
      theorem Mahler32.mahler_conjecture (x : ) (h : x 0) (hx : IsZNumber x) :

      The Mahler Conjecture states that there are no non-zero Z-numbers.

      theorem Mahler32.mahler_conjecture.variants.consequence (H : ∀ (x : ), x 0IsZNumber xFalse) :
      1 / 2 < Ω (3 / 2)

      If Mahler's conjecture is true, i.e. there are no Z-numbers, then Ω(3/2) exceeds 1/2.

      theorem Mahler32.mahler_conjecture.variants.flatto_lagarias_pollington (p q : ) (hq : 1 < q) (hpq : p.Coprime q) (hpq' : q < p) :
      1 / p < Ω (p / q)

      It is known that for all rational p/q > 1 in lowest terms, we have Ω(p/q) > 1/p.