For a real number α, define Ω(α) as
$$ \Omega (\alpha )=\inf _{\theta > 0}\left({\limsup _{n\rightarrow \infty }\left\lbrace {\theta \alpha ^{n}}\right\rbrace -\liminf _{n\rightarrow \infty }\left\lbrace {\theta \alpha ^{n}}\right\rbrace }\right). $$
Equations
- Mahler32.Ω α = ⨅ (θ : ℝ), ⨅ (_ : 0 < θ), Filter.limsup (fun (n : ℕ) => Int.fract (θ * α ^ n)) Filter.atTop - Filter.liminf (fun (n : ℕ) => Int.fract (θ * α ^ n)) Filter.atTop
Instances For
A Z-number is a real number x such that the fractional parts of x(3/2)^n are less than
1/2 for all positive integers n.