Documentation

FormalConjectures.Wikipedia.LittlewoodConjecture

Littlewood conjectures #

References:

@[reducible, inline]
noncomputable abbrev LittlewoodConjecture.distToNearestInt (x : ) :

The distance to the nearest integer is the function $\||x\|| := \min(|x - \lfloor x \rfloor|, |x - \lceil x \rceil|)$.

Equations
Instances For

    For any two real numbers $\alpha$ and $\beta$, $$ \liminf_{n\to\infty} n\||n\alpha\||\||n\beta\|| = 0 $$ where $\||x\|| := \min(|x - \lfloor x \rfloor|, |x - \lceil x \rceil|)$ is the distance to the nearest integer.

    theorem LittlewoodConjecture.padic_littlewood_conjecture (α : ) (p : ) (hp : Nat.Prime p) :
    Filter.liminf (fun (n : ) => n * (padicNorm p n) * distToNearestInt (n * α)) Filter.atTop = 0

    For real number $\alpha$ and prime $p$, $$ \liminf_{n \to\infty} n |n|_{p}\||n\alpha\|| = 0 $$ where $\||x\|| := \min(|x - \lfloor x \rfloor|, |x - \lceil x \rceil|)$ is the distance to the nearest integer, and $|x|_{p}$ is the $p$-adic norm.