Documentation

FormalConjectures.Wikipedia.LittlewoodConjecture

Littlewood conjecture #

Reference: Wikipedia

@[reducible, inline]
noncomputable abbrev distToNearestInt (x : ) :

The distance to the nearest integer is the function $\||x\|| := \min(|x - \lfloor x \rfloor|, |x - \lceil x \rceil|)$.

Equations
Instances For
    theorem littlewood_conjecture (α β : ) :
    Filter.liminf (fun (n : ) => n * distToNearestInt (n * α) * distToNearestInt (n * β)) Filter.atTop = 0

    For any two real numbers $\alpha$ and $\beta$, $$ \liminf_{n\to\infty} n\||n\alpha\||\||n\beta\|| = 0 $$ where $\||nx\|| := \min(|x - \lfloor x \rfloor|, |x - \lceil x \rceil|)$ is the distance to the nearest integer.