Littlewood conjectures #
References:
- Wikipedia
- [Bernard Mathan and Olivier Touli´e, Problem`emes diophantiens simultan´es][mathantoilie2004]
@[reducible, inline]
The distance to the nearest integer is the function $\||x\|| := \min(|x - \lfloor x \rfloor|, |x - \lceil x \rceil|)$.
Instances For
theorem
LittlewoodConjecture.littlewood_conjecture
(α β : ℝ)
:
Filter.liminf (fun (n : ℕ) => ↑n * distToNearestInt (↑n * α) * distToNearestInt (↑n * β)) Filter.atTop = 0
For any two real numbers $\alpha$ and $\beta$, $$ \liminf_{n\to\infty} n\||n\alpha\||\||n\beta\|| = 0 $$ where $\||x\|| := \min(|x - \lfloor x \rfloor|, |x - \lceil x \rceil|)$ is the distance to the nearest integer.
For real number $\alpha$ and prime $p$, $$ \liminf_{n \to\infty} n |n|_{p}\||n\alpha\|| = 0 $$ where $\||x\|| := \min(|x - \lfloor x \rfloor|, |x - \lceil x \rceil|)$ is the distance to the nearest integer, and $|x|_{p}$ is the $p$-adic norm.