The Mahler measure of f(X)
is defined as ‖a‖ ∏ᵢ max(1,‖αᵢ‖)
,
where f(X)=a(X-α₁)(X-α₂)...(X-αₙ)
.
Equations
- LehmerMahlerMeasureProblem.mahlerMeasure f = ‖f.leadingCoeff‖ * (Multiset.map (fun (x : ℂ) => 1 ⊔ ‖x‖) f.roots).prod
Instances For
Equations
Instances For
theorem
LehmerMahlerMeasureProblem.lehmer_mahler_measure_problem :
∃ (μ : ℝ), ∀ (f : Polynomial ℤ), μ > 1 ∧ (mahlerMeasureZ f > 1 → mahlerMeasureZ f ≥ μ)
Let M(f)
denote the Mahler measure of f
.
There exists a constant μ>1
such that for any f(x)∈ℤ[x], M(f)>1 → M(f)≥μ
.
Equations
- One or more equations did not get rendered due to their size.
Instances For
theorem
LehmerMahlerMeasureProblem.lehmer_mahler_measure_problem.variants.best
(f : Polynomial ℤ)
(hf : mahlerMeasureZ f > 1)
:
μ=M(X^10 + X^9 - X^7 - X^6 - X^5 - X^4 - X^3 + X + 1)
is the best value for lehmer_mahler_measure_problem
.
theorem
LehmerMahlerMeasureProblem.lehmer_mahler_measure_problem.variants.not_reciprocal
(f : Polynomial ℤ)
(hf : mahlerMeasureZ f > 1)
(hf' : f.reverse ≠ f)
:
If f
is not reciprocal and M(f)>1
then M(f) ≥ M(X^3 - X - 1)
.
Polynomial.HasOddCoeffs f
means that all coefficients of f : Polynomial ℤ
are odd.
Equations
- LehmerMahlerMeasureProblem.Polynomial.HasOddCoeffs f = ∀ i ∈ f.support, Odd (f.coeff i)
Instances For
theorem
LehmerMahlerMeasureProblem.lehmer_mahler_measure_problem.variants.odd
(f : Polynomial ℤ)
(hf : mahlerMeasureZ f > 1)
(hf' : Polynomial.HasOddCoeffs f)
:
If all the coefficients of f
are odd and M(f)>1
, M(f) ≥ M(X^2 - X - 1)
.