Documentation

FormalConjectures.Wikipedia.Kaplansky

Kaplansky's Conjectures #

Reference: Wikipedia

The zero-divisor conjecture

If G is torsion-free, then the group algebra K[G] has no non-trivial zero divisors.

theorem Kaplansky.idempotent_conjecture (K : Type u_1) [Field K] (G : Type u_2) [Group G] (hG : Monoid.IsTorsionFree G) (a : MonoidAlgebra K G) (h : IsIdempotentElem a) :
a = 0 a = 1

The idempotent conjecture

If G is torsion-free, then K[G] has no non-trivial idempotents.

def Kaplansky.IsTrivialUnit {K : Type u_1} [Field K] {G : Type u_2} (u : MonoidAlgebra K G) :

A unit in K[G] is trivial if it is exactly of the form kg where:

  • k is a unit in the base field K
  • g is an element of the group G
Equations
Instances For
    theorem Kaplansky.IsTrivialUnit.isUnit (K : Type u_1) [Field K] (G : Type u_2) [Group G] {u : MonoidAlgebra K G} (h : IsTrivialUnit u) :

    Counterexamples #

    @[reducible, inline]

    The Promislow group ⟨ a, b | b⁻¹a²ba², a⁻¹b²ab² ⟩

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For

      If $P$ is the Promislow group, then the group ring $\mathbb{F}_p[P]$ has a non-trivial unit.

      If $P$ is the Promislow group, then the group ring $\mathbb{C}[P]$ has a non-trivial unit.

      theorem Kaplansky.counter_unit_conjecture :
      ∃ (G : Type) (x : Group G) (_ : Monoid.IsTorsionFree G), ∀ (p : ), p = 0 Nat.Prime p∃ (K : Type) (x_3 : Field K) (_ : CharP K p) (u : (MonoidAlgebra K G)ˣ), ¬IsTrivialUnit u

      The Unit Conjecture is false.

      At least there is a counterexample for any prime and zero characteristic: [Mu21] Murray, A. (2021). More Counterexamples to the Unit Conjecture for Group Rings. [Pa21] Passman, D. (2021). On the counterexamples to the unit conjecture for group rings. [Ga24] Gardam, G. (2024). Non-trivial units of complex group rings.

      theorem Kaplansky.counter_unit_conjecture_weak (p : ) (hp : p = 0 Nat.Prime p) :
      ∃ (G : Type) (x : Group G) (_ : Monoid.IsTorsionFree G) (K : Type) (x_2 : Field K) (_ : CharP K p) (u : (MonoidAlgebra K G)ˣ), ¬IsTrivialUnit u

      There is a counterexample to Unit Conjecture in any characteristic.