Documentation

FormalConjectures.Wikipedia.JacobianConjecture

Jacobian conjecture #

Reference: Wikipedia

@[reducible, inline]
abbrev RegularFunction (k : Type u_1) [CommRing k] (σ : Type u_2) (τ : Type u_3) :
Type (max (max u_3 u_1) u_2)

Implicitly use σ as an index set and k as coefficient ring.

Equations
Instances For
    noncomputable def RegularFunction.Jacobian {k : Type u_1} [CommRing k] {σ : Type u_2} {τ : Type u_3} (F : RegularFunction k σ τ) :
    Matrix σ τ (MvPolynomial σ k)

    The Jacobian of a vector valued polynomial function, viewed as a polynomial.

    Equations
    Instances For
      noncomputable def RegularFunction.comp {k : Type u_1} [CommRing k] {σ : Type u_2} {τ : Type u_3} {ι : Type u_4} (F : RegularFunction k σ τ) (G : RegularFunction k τ ι) :

      The composition of two vector valued polynomial functions.

      Equations
      Instances For
        theorem jacobian_conjecture {k : Type u_1} [Field k] [CharZero k] {σ : Type u_2} [Fintype σ] (F : RegularFunction k σ σ) (H : IsUnit F.Jacobian.det) :

        The Jacobian Conjecture: any regular function (i.e. vector valued polynomial function from) kⁿ → kᵐ whose Jacobian is a non-zero constant has an inverse that is given by a regular function, where k is a field of characteristic 0

        noncomputable def RegularFunction.aeval {k : Type u_1} [Field k] {σ : Type u_2} {τ : Type u_3} {S₁ : Type u_5} [CommSemiring S₁] [Algebra k S₁] (F : RegularFunction k σ τ) :
        (σS₁)τS₁

        The evaluation of a regular function f over k at some point a with coordinates in some algebra over k

        Equations
        Instances For
          theorem comp_aeval {k : Type u_1} [Field k] {σ : Type u_2} {τ : Type u_3} {ι : Type u_4} (F : RegularFunction k σ τ) (G : RegularFunction k τ ι) (a : σk) :
          (F.comp G).aeval a = G.aeval (F.aeval a)

          aeval is compatible with composition of regular functions

          theorem sanity_check_condition_1 {k : Type u_1} [Field k] [CharZero k] {σ : Type u_2} [Fintype σ] (F : RegularFunction k σ σ) :