Documentation

FormalConjectures.Wikipedia.Grimm

Grimm's conjecture #

Reference: Wikipedia

theorem Grimm.grimm_conjecture (n k : ) (hn : 1 n) (hk : 1 k) (h : ∀ (i : Fin k), 1 < n + i ¬Nat.Prime (n + i)) :
∃ (ps : Fin k ), ∀ (i : Fin k), Nat.Prime (ps i) ps i n + i

Grimm's Conjecture If $n, n+1, \dots, n+k-1$ are all composite numbers, then there are $k$ distinct primes $p_i$ such that $p_i$ divides $n + i$ for all $0 \le i \le k-1$.

theorem Grimm.grimm_conjecture_weak (n k : ) (hn : 1 n) (hk : 1 k) (h : ∀ (i : Fin k), 1 < n + i ¬Nat.Prime (n + i)) :
∃ (ps : Fin k ), ∀ (i : Fin k), Nat.Prime (ps i) ∃ (j : Fin k), ps i n + j

Grimm's Conjecture, weaker version If $n, n+1, \dots, n+k-1$ are all composite numbers, then their product has at least $k$ distinct prime divisors.