Documentation

FormalConjectures.Wikipedia.Gilbreath

Gilbreath's conjecture #

Reference: Wikipedia

noncomputable def Gilbreath.d :

Gilbreath's nth difference, $d^n$ Let $d^0(n) = p_n$ and $d^k(n) = |d^{k-1}(n+1) - d^{k-1}(n)|

Equations
Instances For
    theorem Gilbreath.gilbreath_conjecture (k : ℕ+) :
    d (↑k) 0 = 1

    Gilbreath's conjecture Gilbreath's conjecture states that every term in the sequence $d^k_0$ for $k > 0$ is equal to 1.