Let $\chi$ be a Dirichlet character, trivialZeros is the set of trivial zeros of the
Dirichlet $L$-function of $\chi$ which is always a set of non-positive integers.
- $\chi = 1$ then the Dirichlet $L$-function is the Riemann zeta function, having trivial zeroes at all negative integers (exclude $0$).
- $\chi$ is odd, then the trivial zeroes are the negative odd integers.
- $\chi \neq 1$ is even, then the trivial zeroes are the non-positive even integers.
Equations
Instances For
theorem
GRH.generalized_riemann_hypothesis
(q : ℕ)
[NeZero q]
(χ : DirichletCharacter ℂ q)
(hχ : χ.IsPrimitive)
(s : ℂ)
(hs : DirichletCharacter.LFunction χ s = 0)
(hs_nontrivial : s ∉ Int.cast '' trivialZeros χ)
:
The Generalized Riemann Hypothesis asserts that all the non-trivial zeros of the Dirichlet $L$-function $L(\chi, s)$ of a primitive Dirichlet character $\chi$ have real part $\frac{1}{2}$.
theorem
GRH.implies_riemannHypothesis :
(DirichletCharacter.IsPrimitive 1 →
∀ (s : ℂ), DirichletCharacter.LFunction 1 s = 0 → s ∉ Int.cast '' trivialZeros 1 → s.re = 1 / 2) ↔ RiemannHypothesis
GRH for $\chi = 1$ is RiemannHypothesis.