Documentation

FormalConjectures.Wikipedia.GeneralizedRiemannHypothesis

Generalized Riemann Hypothesis #

Reference: Wikipedia

Let $\chi$ be a Dirichlet character, trivialZeros is the set of trivial zeros of the Dirichlet $L$-function of $\chi$ which is always a set of non-positive integers.

  • $\chi = 1$ then the Dirichlet $L$-function is the Riemann zeta function, having trivial zeroes at all negative integers (exclude $0$).
  • $\chi$ is odd, then the trivial zeroes are the negative odd integers.
  • $\chi \neq 1$ is even, then the trivial zeroes are the non-positive even integers.
Equations
Instances For
    theorem GRH.generalized_riemann_hypothesis (q : ) [NeZero q] (χ : DirichletCharacter q) ( : χ.IsPrimitive) (s : ) (hs : DirichletCharacter.LFunction χ s = 0) (hs_nontrivial : sInt.cast '' trivialZeros χ) :
    s.re = 1 / 2

    The Generalized Riemann Hypothesis asserts that all the non-trivial zeros of the Dirichlet $L$-function $L(\chi, s)$ of a primitive Dirichlet character $\chi$ have real part $\frac{1}{2}$.