Firoozbakht's conjecture The inequality $\sqrt[n+1]{p_{n+1}} < \sqrt[n]{p_n}$ holds for all prime numbers $p_n$.
theorem
Firoozbakht.firoozbakht_conjecture_consequence
(n : ℕ)
(hn : 3 < n)
(P : ∀ (n : ℕ), firoozbakhtSeq (n + 1) < firoozbakhtSeq n)
:
The inequality $p_{n+1}-p_n < (\log p_n)^2-\log p_n$ holds for all $n>4$. A consequence of Firuzbakht's conjecture.