Documentation

FormalConjectures.Wikipedia.FermatCatalanConjecture

Fermat-Catalan conjecture #

Reference: Wikipedia

The set of solutions to the Fermat-Catalan Conjecture, i.e. the set of solutions $(a,b,c,m,n,k)$ to the equation $a^m + b^n = c^k$ where $\frac 1 m + \frac 1 n + \frac 1 k < 1$.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    Equations
    Instances For

      The proposition that the Fermat-Catalan Conjecture is true.

      Equations
      Instances For

        The Fermat–Catalan conjecture states that the equation $a^m + b^n = c^k$ has only finitely many solutions $(a,b,c,m,n,k)$ with distinct triplets of values $(a^m, b^n, c^k)$ where $a, b, c$ are positive coprime integers and $m, n, k$ are positive integers satisfying $\frac 1 m + \frac 1 n + \frac 1 k < 1$.

        theorem fermat_catalan.variants.darmon_granville (m n k : ) (hm : 0 < m) (hn : 0 < n) (hk : 0 < k) (H : 1 / m + 1 / n + 1 / k < 1) :
        {(a, b, c) : × × | 0 < a 0 < b 0 < c a ^ m + b ^ n = c ^ k {a, b, c}.Pairwise Nat.Coprime}.Finite

        By the Darmon-Granville theorem, for any fixed choice of positive integers m, n and k satisfying $\frac 1 m + \frac 1 n + \frac 1 k < 1$, only finitely many coprime triples $(a, b, c)$ solving $a^m + b^n = c^k$ exist.