theorem
Exponentials.four_exponentials_conjecture
(x y : Fin 2 → ℂ)
(h1 : LinearIndependent ℚ x)
(h2 : LinearIndependent ℚ y)
:
∃ (i : Fin 2) (j : Fin 2), Transcendental ℚ (Complex.exp (x i * y j))
Four exponentials conjecture Let $x_0, x_1$ and $y_0, y_1$ be $\mathbb Q$-linearly independent pairs of complex numbers, then some $e^{x_i y_j}$ is transcendental.
The four exponential conjecture would imply that for any irrational number $t$, at least one of the numbers $2^t$ and $3^t$ is transcendental.