Documentation

FormalConjectures.Wikipedia.EulerSumOfPowers

Euler's sum of powers conjecture #

Reference: Wikipedia

theorem EulerSumOfPowers.eulers_sum_of_powers_conjecture (n k b : ) (hn : 1 < n) (hk : 5 < k) (a : Fin n) (ha : ∀ (i : Fin n), a i > 0) (hsum : i : Fin n, a i ^ k = b ^ k) :
k n

Euler's sum of powers conjecture states that for integers $n > 1$ and $k > 1$, if the sum of $n$ positive integers each raised to the $k$-th power equals another integer raised to the $k$-th power, then $n \geq k$.

The conjecture is known to be false for $k = 4$ and $k = 5$, but remains open for $k \geq 6$.

theorem EulerSumOfPowers.eulers_sum_of_powers_conjecture.false_for_k4 :
¬∀ (n b : ), 1 < n∀ (a : Fin n), (∀ (i : Fin n), a i > 0)i : Fin n, a i ^ 4 = b ^ 44 n
theorem EulerSumOfPowers.eulers_sum_of_powers_conjecture.false_for_k5 :
¬∀ (n b : ), 1 < n∀ (a : Fin n), (∀ (i : Fin n), a i > 0)i : Fin n, a i ^ 5 = b ^ 55 n