theorem
EulerSumOfPowers.eulers_sum_of_powers_conjecture
(n k b : ℕ)
(hn : 1 < n)
(hk : 5 < k)
(a : Fin n → ℕ)
(ha : ∀ (i : Fin n), a i > 0)
(hsum : ∑ i : Fin n, a i ^ k = b ^ k)
:
Euler's sum of powers conjecture states that for integers $n > 1$ and $k > 1$, if the sum of $n$ positive integers each raised to the $k$-th power equals another integer raised to the $k$-th power, then $n \geq k$.
The conjecture is known to be false for $k = 4$ and $k = 5$, but remains open for $k \geq 6$.