Documentation

FormalConjectures.Wikipedia.DeterminantalConjecture

Determinantal conjecture #

Reference: Wikipedia

theorem determinantal_conjecture (n : Type) [Fintype n] [DecidableEq n] (d1 d2 : n) (U1 U2 : (unitary (Matrix n n ))) :
(U1 * Matrix.diagonal d1 * (star U1) + U2 * Matrix.diagonal d2 * (star U2)).det (convexHull ) {x : | ∃ (σ : Equiv.Perm n), i : n, (d1 i + d2 (σ i)) = x}

Does the determinant of the sum $A + B$ of two $n \times n$ normal complex matrices A and B always lie in the convex hull of the $n!$ points $\prod i (\lambda(A)_i + \lambda(B)_{σ(i)})$? Here the numbers $\lambda (A)_i$ and $\lambda (B)_i$ are the eigenvalues of $A$ and $B$, and $\sigma$ is an element of the symmetric group $S_n$.