Congruent Number #
A natural number $n$ is called a congruent number if there exists a right triangle with rational sides $a$, $b$, and hypotenuse $c$ such that the area of the triangle is $\frac{1}{2}ab = n$.
References:
Tunnell's theorem: Let $A_n$, $B_n$, $C_n$, and $D_n$ be the sets defined as follows:
- $A_n = \{(x, y, z) \in \mathbb{Z}^3 : n = 2x^2 + y^2 + 32z^2\}$
- $B_n = \{(x, y, z) \in \mathbb{Z}^3 : n = 2x^2 + y^2 + 8z^2\}$
- $C_n = \{(x, y, z) \in \mathbb{Z}^3 : n = 8x^2 + 2y^2 + 64z^2\}$
- $D_n = \{(x, y, z) \in \mathbb{Z}^3 : n = 8x^2 + 2y^2 + 16z^2\}$
If $n$ is a squarefree congruent number, then:
- If $n$ is odd, then $2 |A_n| = |B_n|$.
- If $n$ is even, then $2 |C_n| = |D_n|$.
Converse is true under the BSD conjecture.
Tunnell's theorem.
Converse of Tunnell's theorem.