Documentation

FormalConjectures.Wikipedia.CongruentNumber

Congruent Number #

A natural number $n$ is called a congruent number if there exists a right triangle with rational sides $a$, $b$, and hypotenuse $c$ such that the area of the triangle is $\frac{1}{2}ab = n$.

References:

Equations
Instances For

    Tunnell's theorem: Let $A_n$, $B_n$, $C_n$, and $D_n$ be the sets defined as follows:

    If $n$ is a squarefree congruent number, then:

    Converse is true under the BSD conjecture.

    Equations
    Instances For
      Equations
      Instances For
        Equations
        Instances For
          Equations
          Instances For

            Tunnell's theorem.

            theorem CongruentNumber.Tunnell_odd (n : ) (hsqf : Squarefree n) (hodd : Odd n) :
            congruentNumber n2 * (A n).ncard = (B n).ncard
            theorem CongruentNumber.Tunnell_even (n : ) (hsqf : Squarefree n) (heven : Even n) :
            congruentNumber n2 * (C n).ncard = (D n).ncard

            Converse of Tunnell's theorem.

            theorem CongruentNumber.Tunnell_odd_converse (n : ) (hsqf : Squarefree n) (hodd : Odd n) :
            2 * (A n).ncard = (B n).ncardcongruentNumber n
            theorem CongruentNumber.Tunnell_even_converse (n : ) (hsqf : Squarefree n) (heven : Even n) :
            2 * (C n).ncard = (D n).ncardcongruentNumber n