Documentation

FormalConjectures.Wikipedia.AgohGiuga

Agoh-Giuga conjecture #

Reference: Wikipedia

The Agoh-Giuga Conjecture.

References:

The Agoh-Giuga Conjecture, Agoh's formulation. An integer p ≥ 2 is prime if and only if we have p*B_{p-1} ≡ -1 [MOD p]

Equations
Instances For

    The Agoh-Giuga Conjecture, Giuga's formulation. An integer p ≥ 2 is prime if and only if it satifies the congruence ∑_{i=1}^{p-1} i^{p-1} ≡ -1 [MOD p].

    Equations
    Instances For

      The Agoh-Giuga Conjecture, Agoh's formulation

      The Agoh-Giuga Conjecture, Giuga's formulation

      The two statements of the conjecture are equivalent.

      A (weak) Giuga number is a number $n$ such that $$\sum_{i=1}^{n - 1}i^{\varphi(n)} \equiv -1\pmod{n}$$.

      Equations
      Instances For

        A (strong) Giuga number is a number $n$ such that $$\sum_{i=1}^{n - 1}i^{n - 1} \equiv -1\pmod{n}$$

        Equations
        Instances For

          A number $n$ is weak Giuga if and only if $p \mid (\frac{n}{p} - 1)$ for all prime divisors $p$ of $n$.

          theorem AgohGiuga.isWeakGiuga_iff_sum_primeFactors (n : ) :
          IsWeakGiuga n ∃ (m : ), pn.primeFactors, 1 / p - 1 / n = m

          A number $n$ is weak Giuga if and only if $$ \sum_{p\mid n} \frac{1}{p} - \frac{1}{n} \in\mathbb{N}. $$

          A Carmichael number is a composite number n such that for all b ≥ 1, we have b^n ≡ b (mod n).

          Equations
          Instances For
            theorem AgohGiuga.squarefree_of_isCarmichael {a : } (ha₁ : 1 < a) (ha₂ : ¬Nat.Prime a) (ha₃ : IsCarmichael a) :

            A composite Carmichael number is squarefree.

            theorem AgohGiuga.korselts_criterion (a : ) (ha₁ : 1 < a) (ha₂ : ¬Nat.Prime a) :
            IsCarmichael a Squarefree a ∀ (p : ), Nat.Prime pp ap - 1 a - 1

            A composite number a is Carmichael if and only if it is squarefree and, for all prime p dividing a, we have p - 1 ∣ a - 1.

            theorem AgohGiuga.isStrongGiuga_iff (a : ) :
            IsStrongGiuga a IsCarmichael a ∃ (n : ), pa.primeFactors, 1 / p - 1 / a = n

            Giuga showed that a number n is strong Giuga if and only if it is Carmichael and ∑_{p|n} 1/p - 1/n ∈ ℕ (i.e., if and only if it is Carmichael and weak Giuga). Ref: G. Giuga, Su una presumibile proprieta caratteristica dei numeri primi

            Every strong Giuga number is a Carmichael number.

            Giuga showed that a Giuga number has at least 9 prime factors. Ref: G. Giuga, Su una presumibile proprieta caratteristica dei numeri primi

            theorem AgohGiuga.agoh_giuga.variants.isStrongGiuga_growth (G : ) (hG : G = fun (x : ) => (Finset.filter IsStrongGiuga (Finset.Icc 1 x)).card) :
            ∃ (N : ) (O : ), nN, (G n) O * n * Real.log n

            Let G(X) denote the number of exceptions n ≤ X to Giuga’s conjecture. Then for X larger than an absolute constant which can be made explicit, G(X) ≪ X^{1/2} log X. Ref: Vicentiu Tipu, A Note on Giuga’s Conjecture