Documentation

FormalConjectures.Wikipedia.AgohGiuga

Agoh-Giuga conjecture #

Reference: Wikipedia

The Agoh-Giuga Conjecture.

References:

The Agoh-Giuga Conjecture, Agoh's formulation. An integer p ≥ 2 is prime if and only if we have p*B_{p-1} ≡ -1 [MOD p]

Equations
Instances For

    The Agoh-Giuga Conjecture, Giuga's formulation. An integer p ≥ 2 is prime if and only if it satifies the congruence ∑_{i=1}^{p-1} i^{p-1} ≡ -1 [MOD p].

    Equations
    Instances For

      The Agoh-Giuga Conjecture, Agoh's formulation

      The Agoh-Giuga Conjecture, Giuga's formulation

      The two statements of the conjecture are equivalent.

      def IsGiuga (p : ) :

      A Giuga number is a counterexample to Giuga's conjecture.

      Equations
      Instances For
        def IsCarmichael (n : ) :

        A Carmichael number is a composite number n such that for all b ≥ 1, we have b^n ≡ b (mod n).

        Equations
        Instances For
          theorem korselts_criterion (a : ) (ha₁ : 1 < a) (ha₂ : ¬Nat.Prime a) :
          IsCarmichael a Squarefree a ∀ (p : ), Nat.Prime pp ap - 1 a - 1

          A composite number a is Carmichael if and only if it is squarefree and, for all prime p dividing a, we have p - 1 ∣ a - 1.

          Every Giuga number is a Carmichael number.

          theorem agoh_giuga.variants.isGiuga_iff (a : ) :
          IsGiuga a IsCarmichael a ∃ (n : ), pa.primeFactors, 1 / p - 1 / a = n

          Giuga showed that a number n is Giuga if and only if it is Carmichael and ∑_{p|n} 1/p - 1/n ∈ ℕ Ref: G. Giuga, Su una presumibile proprieta caratteristica dei numeri primi

          Giuga showed that a Giuga number has at least 9 prime factors. Ref: G. Giuga, Su una presumibile proprieta caratteristica dei numeri primi

          theorem agoh_giuga.variants.isGiuga_growth (G : ) (hG : G = fun (x : ) => (Finset.filter IsGiuga (Finset.Icc 1 x)).card) :
          ∃ (N : ) (O : ), nN, (G n) O * n * Real.log n

          Let G(X) denote the number of exceptions n ≤ X to Giuga’s conjecture. Then for X larger than an absolute constant which can be made explicit, G(X) ≪ X^{1/2} log X. Ref: Vicentiu Tipu, A Note on Giuga’s Conjecture