The Agoh-Giuga Conjecture.
References:
- Wikipedia: https://en.wikipedia.org/wiki/Agoh-Giuga_conjecture
- G. Giuga, Su una presumibile proprieta caratteristica dei numeri primi
- E. Bedocchi, Note on a conjecture about prime numbers
- D. Borwein, J. M. Borwein, P. B. Borwein, and R. Girgensohn, Giuga’s conjecture on primality
- V. Tipu, A Note on Giuga’s Conjecture
The Agoh-Giuga Conjecture, Giuga's formulation.
An integer p ≥ 2
is prime if and only if it satifies the congruence
∑_{i=1}^{p-1} i^{p-1} ≡ -1 [MOD p]
.
Equations
- AgohGiugaSum = ∀ p ≥ 2, Nat.Prime p ↔ p ∣ 1 + ∑ i ∈ Finset.Ioo 0 p, i ^ (p - 1)
Instances For
The two statements of the conjecture are equivalent.
A Carmichael number is a composite number n
such that for all b ≥ 1
,
we have b^n ≡ b (mod n)
.
Equations
- IsCarmichael n = ∀ b ≥ 1, n.Coprime b → n.FermatPsp b
Instances For
Every Giuga number is a Carmichael number.
Giuga showed that a number n
is Giuga if and only if it is
Carmichael and ∑_{p|n} 1/p - 1/n ∈ ℕ
Ref: G. Giuga, Su una presumibile proprieta caratteristica dei numeri primi
Giuga showed that a Giuga number has at least 9 prime factors. Ref: G. Giuga, Su una presumibile proprieta caratteristica dei numeri primi
Let G(X)
denote the number of exceptions n ≤ X
to Giuga’s conjecture.
Then for X
larger than an absolute constant which can be made
explicit, G(X) ≪ X^{1/2} log X
.
Ref: Vicentiu Tipu, A Note on Giuga’s Conjecture