The Agoh-Giuga Conjecture.
References:
- Wikipedia: https://en.wikipedia.org/wiki/Agoh-Giuga_conjecture
- Wikipedia: https://en.wikipedia.org/wiki/Giuga_number
- G. Giuga, Su una presumibile proprieta caratteristica dei numeri primi
- E. Bedocchi, Note on a conjecture about prime numbers
- D. Borwein, J. M. Borwein, P. B. Borwein, and R. Girgensohn, Giuga’s conjecture on primality
- V. Tipu, A Note on Giuga’s Conjecture
The Agoh-Giuga Conjecture, Giuga's formulation.
An integer p ≥ 2 is prime if and only if it satifies the congruence
∑_{i=1}^{p-1} i^{p-1} ≡ -1 [MOD p].
Equations
- AgohGiuga.AgohGiugaSum = ∀ p ≥ 2, Nat.Prime p ↔ p ∣ 1 + ∑ i ∈ Finset.Ioo 0 p, i ^ (p - 1)
Instances For
The Agoh-Giuga Conjecture, Giuga's formulation
The two statements of the conjecture are equivalent.
A (weak) Giuga number is a composite number $n$ such that $$\sum_{i=1}^{n - 1}i^{\varphi(n)} \equiv -1\pmod{n}$$.
Equations
- AgohGiuga.IsWeakGiuga n = (n.Composite ∧ n ∣ 1 + ∑ i ∈ Finset.Ioo 0 n, i ^ n.totient)
Instances For
A (strong) Giuga number is a composite number $n$ such that $$\sum_{i=1}^{n - 1}i^{n - 1} \equiv -1\pmod{n}$$
Equations
- AgohGiuga.IsStrongGiuga n = (n.Composite ∧ n ∣ 1 + ∑ i ∈ Finset.Ioo 0 n, i ^ (n - 1))
Instances For
A composite number $n$ is weak Giuga if and only if $p \mid (\frac{n}{p} - 1)$ for all prime divisors $p$ of $n$.
A composite number $n$ is weak Giuga if and only if $$ \sum_{p\mid n} \frac{1}{p} - \frac{1}{n} \in\mathbb{N}. $$
A Carmichael number is a composite number n such that for all b ≥ 1,
we have b^n ≡ b (mod n).
Equations
- AgohGiuga.IsCarmichael n = ∀ b ≥ 1, n.Coprime b → n.FermatPsp b
Instances For
A composite Carmichael number is squarefree.
A composite number a is Carmichael if and only if it is squarefree
and, for all prime p dividing a, we have p - 1 ∣ a - 1.
Giuga showed that a number n is strong Giuga if and only if it is
Carmichael and ∑_{p|n} 1/p - 1/n ∈ ℕ (i.e., if and only if it is Carmichael
and weak Giuga).
Ref: G. Giuga, Su una presumibile proprieta caratteristica dei numeri primi
Every strong Giuga number is a Carmichael number.
Giuga showed that a Giuga number has at least 9 prime factors. Ref: G. Giuga, Su una presumibile proprieta caratteristica dei numeri primi
Let G(X) denote the number of exceptions n ≤ X to Giuga’s conjecture.
Then for X larger than an absolute constant which can be made
explicit, G(X) ≪ X^{1/2} log X.
Ref: Vicentiu Tipu, A Note on Giuga’s Conjecture