Documentation

FormalConjectures.Paper.Kurepa

Kurepa's conjecture #

Reference: On the left factorial function !N, by Đuro Kurepa Math. Balkanica 1, p. 147-153, 1971

Left factorial of n $$$!n = 0!+1!+2!+...+(n-1)!$$

Equations
Instances For
    theorem kurepa_conjecture (n : ) (h_n : 2 < n) :

    Kurepa's conjecture #

    For all $n$, $$!n\not\equiv 0 \mod n$$

    This appears as B44 "Sums of factorials." in Unsolved Problems in Number Theory by Richard K. Guy

    theorem kurepa_conjecture.variant.prime (p : ) (h_p : 2 < p) :

    This statement can be reduced to the prime case only.

    theorem kurepa_conjecture.prime_reduction :
    (∀ (n : ), 2 < nleft_factorial n % n 0) ∀ (p : ), 2 < pNat.Prime pleft_factorial p % p 0

    An equivalent formulation in terms of the gcd of $n!$ and $!n$.

    theorem kurepa_conjecture.gcd_reduction :
    (∀ (n : ), 2 < nleft_factorial n % n 0) ∀ (n : ), 2 < nn.factorial.gcd (left_factorial n) = 2
    theorem kurepa_conjecture.variant.first_cases (n : ) (h_n : 2 < n) (h_n_upper : n < 50) :

    Sanity check: for small values we can just compute that the conjecture is true

    theorem kurepa_conjecture.variant.gcd.first_cases (n : ) (h_n : 2 < n) (h_n_upper : n < 50) :

    Sanity check: for small values we can just compute that the conjecture is true.