Schur's theorem on Galois groups of truncated exponential polynomials #
Reference: (https://math.stackexchange.com/questions/2814220)
Reference (https://mathoverflow.net/questions/477077)
The truncated exponential polynomial truncatedExp n
is
given by ∑_{j=0}^{n} x^j / j!
over ℚ
, which is the
n
-th partial sum of the Taylor series for the exponential function e^x
.
Equations
- SchurTruncatedExponential.truncatedExp n = ∑ j ∈ Finset.range (n + 1), (1 / ↑j.factorial) • Polynomial.X ^ j
Instances For
theorem
SchurTruncatedExponential.schur_truncatedExp_galoisGroup_equiv
(n : ℕ)
(hn : n ≥ 2)
:
if n % 4 = 0 then Nonempty ((truncatedExp n).Gal ≃* ↥(alternatingGroup (Fin n)))
else Nonempty ((truncatedExp n).Gal ≃* Equiv.Perm (Fin n))
Schur's Theorem (1924):
Let f_n(x) = ∑_{j=0}^n x^j/j!
be the n
-th truncated
exponential polynomial over ℚ
. Then for n ≥ 2
:
- If
n ≡ 0 (mod 4)
, the Galois group off_n
is isomorphic to the alternating groupA_n
- If
n ≢ 0 (mod 4)
, the Galois group off_n
is isomorphic to the symmetric groupS_n