Documentation

FormalConjectures.Oeis.«34693»

Smallest number $k$ such that $kn + 1$ is prime.

Reference: A034693

noncomputable def OeisA34693.a (n : ) :

Smallest number $k$ such that $kn + 1$ is prime.

Equations
Instances For
    theorem OeisA34693.one :
    a 1 = 1
    theorem OeisA34693.two :
    a 2 = 1
    theorem OeisA34693.exists_k {n : } (hn : 1 < n) :
    k < n, Nat.Prime (n * k + 1)

    Conjecture: for every $n > 1$ there exists a number $k < n$ such that $nk + 1$ is a prime.

    theorem OeisA34693.exists_k_stronger {n : } (hn : 0 < n) :
    ∃ (k : ), k < 1 + Real.nthRoot 4 n ^ 3 Nat.Prime (n * k + 1)

    A stronger conjecture: for every n there exists a number $k < 1 + n^{0.75}$ such that $nk + 1$ is a prime.

    theorem OeisA34693.exists_k_best_possible :
    n > 0, ∀ (k : ), k < 1 + Real.nthRoot 100 n ^ 74¬Nat.Prime (n * k + 1)

    The expression $1 + n^{0.74}$ does not work as an upper bound.

    theorem OeisA34693.a_isBigO :
    (fun (n : ) => (a n)) fun (n : ) => Real.log n * Real.log (Real.log n)

    Conjecture: $a(n) = O(\log(n)\log(\log(n)))$.

    theorem OeisA34693.a_unbounded :
    ¬BddAbove (Set.range fun (n : ) => (a n) / (Real.log n * Real.log (Real.log n)))

    Counter-conjecture to a_isBigO: $a(n) / (\log n \log \log n)$ is unbounded.