$a(n)$ is the minimum integer $k$ such that the smallest prime factor of the $n$-th Fermat number exceeds $2^(2^n - k)$.
References:
A358684: $a(n)$ is the minimum integer $k$ such that the smallest prime factor of the $n$-th Fermat number exceeds $2^{2^n - k}$. Let $F_n = 2^{2^n} + 1$ be the $n$-th Fermat number, and $P_n$ be its smallest prime factor. The definition of $a(n)$ is equivalent to the closed form: $$a(n) = 2^n - \lfloor \log_2(P_n) \rfloor$$ where $P_n = \operatorname{minFac}(\operatorname{fermatNumber} n)$. The subtraction is defined in $\mathbb{N}$ and is safe since $P_n \le F_n$, implying $\log_2 P_n < 2^n$.
Instances For
Conjecture: the dyadic valuation of A093179(n) - 1 does not exceed 2^n - a(n).
A093179(n) is minFac(fermatNumber n), the smallest prime factor of the n-th Fermat number. The conjecture states that if $P_n$ is the smallest prime factor of the $n$-th Fermat number, then $\nu_2(P_n - 1) \le 2^n - a(n)$. Substituting the definition of $a(n)$, this is equivalent to $\nu_2(P_n - 1) \le \lfloor \log_2(P_n) \rfloor$.
This is Conjecture 3.4 in [SA22].