Documentation

FormalConjectures.Mathoverflow.«75792»

Mathoverflow 75792 #

Various questions about integer complexity, which is the minimum number of 1s needed to express a natural number using addition, multiplication, and parentheses.

Let ‖n‖ denote the integer complexity of n > 0.

We have chosen to formalise this using an inductive type.

References:

The inductively defined predicate that m is reachable in n steps.

Instances For
    theorem Mathoverflow75792.Reachable.dec {m n : } (h : Reachable m n) :
    ∃ (m' : ) (n' : ), m' + 1 = m n' + 1 = n
    theorem Mathoverflow75792.Reachable.le {m n₁ n₂ : } (hn : n₁ n₂) (hm : Reachable m n₁) :
    Reachable m n₂
    theorem Mathoverflow75792.reachable_iff_of_two_le (m n : ) (hm : 2 m) :
    Reachable m n ∃ (m₁ : ) (_ : m₁ < m) (m₂ : ) (_ : m₂ < m) (n₁ : ) (_ : n₁ < n) (n₂ : ) (_ : n₂ < n), n₁ + n₂ = n Reachable m₁ n₁ Reachable m₂ n₂ (m₁ + m₂ = m m₁ * m₂ = m)

    The (Mahler-Popken) complexity of n: the minimum number of 1s needed to express a given number using only addition and multiplication. E.g. 2 = 1 + 1, so complexity 2 = 2.

    Equations
    Instances For
      theorem Mathoverflow75792.Reachable.pow (m n : ) (hm : 0 < m) (hn : 0 < n) :
      Reachable (m ^ n) (m * n)
      theorem Mathoverflow75792.Reachable.pow' (m n : ℕ+) :
      Reachable (m ^ n) (m * n)

      5^6 = 15625 = 1 + 2^3 * 3^2 * (1 + 2^3 * 3^3)!

      theorem Mathoverflow75792.complexity_five_pow :
      (∀ (n : ), 0 < ncomplexity (5 ^ n) = 5 * n) False

      Is 5n the complexity of 5^n for 0 < n? Answer: No.

      theorem Mathoverflow75792.complexity_three_pow :
      (∀ (n : ), 0 < ncomplexity (3 ^ n) = 3 * n) True

      Is 3n the complexity of 3^n for 0 < n? Answer: Yes, by John Selfridge.

      Reference: https://arxiv.org/abs/1207.4841

      theorem Mathoverflow75792.complexity_two_pow :
      (∀ (n : ), 0 < ncomplexity (2 ^ n) = 2 * n) sorry

      Is 2n the complexity of 2^n for 0 < n?