Mathoverflow 347178 #
Reference: mathoverflow/347178 asked by user Biagio Ricceri
Let $f : \mathbb R^n \to \mathbb R, n \geq 2$ be a $C^1$ function. Is it true that $$\sup_{x \in \mathbb R^n}f(x) = \sup_{x\in \mathbb R^n} f(x+\nabla f(x))$$?
Let $f : \mathbb R^n \to \mathbb R, n \geq 2$ be a $C^1$ function. Is the boundedness of $\sup_{x \in \mathbb R^n}f(x)$ and $\sup_{x\in \mathbb R^n} f(x+\nabla f(x))$ equivalent?
Let $f : \mathbb R^n \to \mathbb R, n \geq 2$ be a $C^1$ function. Does the equality $$\sup_{x \in \mathbb R^n}f(x) = \sup_{x\in \mathbb R^n} f(x+\nabla f(x))$$ hold when both suprema are finite?