Documentation

FormalConjectures.Mathoverflow.«347178»

Mathoverflow 347178 #

Reference: mathoverflow/347178 asked by user Biagio Ricceri

theorem Mathoverflow347178.mathoverflow_347178 :
(∀ n2, ∀ (f : EuclideanSpace (Fin n)), ContDiff 1 f → (BddAbove (Set.range f) BddAbove (Set.range fun (x : EuclideanSpace (Fin n)) => f (x + gradient f x))) ⨆ (x : EuclideanSpace (Fin n)), (f x) = ⨆ (x : EuclideanSpace (Fin n)), (f (x + gradient f x))) sorry

Let $f : \mathbb R^n \to \mathbb R, n \geq 2$ be a $C^1$ function. Is it true that $$\sup_{x \in \mathbb R^n}f(x) = \sup_{x\in \mathbb R^n} f(x+\nabla f(x))$$?

theorem Mathoverflow347178.mathoverflow_347178.variants.bounded_iff :
(∀ n2, ∀ (f : EuclideanSpace (Fin n)), ContDiff 1 f → (BddAbove (Set.range f) BddAbove (Set.range fun (x : EuclideanSpace (Fin n)) => f (x + gradient f x)))) sorry

Let $f : \mathbb R^n \to \mathbb R, n \geq 2$ be a $C^1$ function. Is the boundedness of $\sup_{x \in \mathbb R^n}f(x)$ and $\sup_{x\in \mathbb R^n} f(x+\nabla f(x))$ equivalent?

theorem Mathoverflow347178.mathoverflow_347178.variants.bounded_only :
(∀ n2, ∀ (f : EuclideanSpace (Fin n)), ContDiff 1 fBddAbove (Set.range f)BddAbove (Set.range fun (x : EuclideanSpace (Fin n)) => f (x + gradient f x))⨆ (x : EuclideanSpace (Fin n)), f x = ⨆ (x : EuclideanSpace (Fin n)), f (x + gradient f x)) sorry

Let $f : \mathbb R^n \to \mathbb R, n \geq 2$ be a $C^1$ function. Does the equality $$\sup_{x \in \mathbb R^n}f(x) = \sup_{x\in \mathbb R^n} f(x+\nabla f(x))$$ hold when both suprema are finite?