Documentation

FormalConjectures.ForMathlib.NumberTheory.WallSunSunPrimes

#

References:

def LucasSequence.U (P Q : ) :

The Lucas sequence of the first kind $U_0(P, Q) = 0$, $U_1(P, Q)=1$, $U_{n+2}(P, Q)=PU_{n+1}(P, Q)-QU_n(P, Q)$

Equations
Instances For
    def LucasSequence.V (P Q : ) :

    The Lucas sequence of the second kind $V_0(P, Q) = 0$, $V_1(P, Q)=P$, $V_{n+2}(P, Q)=PV_{n+1}(P, Q)-QV_n(P, Q)$

    Equations
    Instances For

      The Lucas numbers $L_0 = 2$, $L_1=1$, $L_{n+2} = L_{n+1}+L_n$

      Equations
      Instances For
        structure IsWallSunSunPrime (p : ) :

        Wall–Sun–Sun prime A prime $p$ is a Wall–Sun–Sun prime if and only if $L_p \equiv 1 \pmod{p^2}$, where $L_p$ is the $p$-th Lucas number.

        Instances For
          structure IsLucasWieferichPrime (a b p : ) :

          Lucas–Wieferich prime A Lucas–Wieferich prime associated with $(a,b)$ is a prime $p$ such $U_{p-\varepsilon}(a,b) \equiv 0 \pmod{p^2}$ where $U(a,b)$ is the Lucas sequence of the first kind and $\varepsilon$ is the Legendre symbol $\left({\tfrac {a^{2}-4b}{p}}\right)$

          Instances For