Equations
- EuclideanGeometry.«termℝ³» = Lean.ParserDescr.node `EuclideanGeometry.«termℝ³» 1024 (Lean.ParserDescr.symbol "ℝ³")
Instances For
The standard basis gives us a preferred orientation in ℝ³
.
Note: when upstreaming this to Mathlib (and generalizing to Fin n
) one
must be careful to avoid an instance diamond with IsEmpty.Orientation
.
Presumably this can be avoided by assuming [NeZero n]
.
Equations
- Module.orientedEuclideanSpaceFinThree = { positiveOrientation := (Pi.basisFun ℝ (Fin 3)).orientation }
instance
fact_finrank_euclideanSpace_fin_three :
Fact (Module.finrank ℝ (EuclideanSpace ℝ (Fin 3)) = 3)
Three dimensional euclidean space is three-dimensional.