Documentation

FormalConjectures.ForMathlib.Data.Set.Triplewise

def Triplewise {α : Type u_1} (r : αααProp) :
Equations
Instances For
    def Set.Triplewise {α : Type u_1} (s : Set α) (r : αααProp) :

    The ternary relation r holds triplewise on the set s if r x y z for all distinct x y z ∈ s.

    Equations
    • s.Triplewise r = ∀ ⦃x : α⦄, x s∀ ⦃y : α⦄, y s∀ ⦃z : α⦄, z sx yy zx zr x y z
    Instances For
      theorem Set.Triplewise.eq {α : Type u_1} {r : αααProp} {s : Set α} {x y z : α} (hs : s.Triplewise r) (hx : x s) (hy : y s) (hz : z s) (h : ¬r x y z) :
      x = y y = z x = z
      theorem Set.Triplewise.mono {α : Type u_1} {r : αααProp} {s t : Set α} (h : t s) (hs : s.Triplewise r) :
      @[simp]
      theorem Set.Triplewise_univ_iff {α : Type u_1} {r : αααProp} :
      theorem Set.triplewise_of_encard_lt {α : Type u_1} {s : Set α} (r : αααProp) (h : s.encard < 3) :
      @[simp]
      theorem Set.triplewise_empty {α : Type u_1} (r : αααProp) :
      @[simp]
      theorem Set.triplewise_singleton {α : Type u_1} {x : α} (r : αααProp) :
      @[simp]
      theorem Set.triplewise_pair {α : Type u_1} {x y : α} (r : αααProp) :
      theorem Set.triplewise_insert {α : Type u_1} {r : αααProp} {s : Set α} {x : α} :
      (insert x s).Triplewise r s.Triplewise r ys, zs, x yx zy zr x y z r y x z r y z x
      theorem Set.triplewise_insert_of_not_mem {α : Type u_1} {r : αααProp} {s : Set α} {x : α} (hx : xs) :
      (insert x s).Triplewise r s.Triplewise r ys, zs, y zr x y z r y x z r y z x
      theorem Set.Triplewise.insert {α : Type u_1} {r : αααProp} {s : Set α} {x : α} (hs : s.Triplewise r) (h : ys, zs, x yx zy zr x y z r y x z r y z x) :
      theorem Set.Triplewise.insert_of_not_mem {α : Type u_1} {r : αααProp} {s : Set α} {x : α} (hx : xs) (hs : s.Triplewise r) (h : ys, zs, y zr x y z r y x z r y z x) :
      theorem Set.triplewise_set_pred_iff {α : Type u_1} {S : Set α} {P : Set αProp} :
      (S.Triplewise fun (x1 x2 x3 : α) => P {x1, x2, x3}) TS, T.ncard = 3P T