Documentation
FormalConjectures
.
ForMathlib
.
Computability
.
TuringMachine
.
PostTuringMachine
Search
return to top
source
Imports
Init
Mathlib.Computability.PostTuringMachine
Mathlib.Logic.Relation
Imported by
Part
.
eq_of_get_eq_get
Part
.
eq_iff_of_dom
Part
.
get_eq_get
Turing
.
dom_of_apply_eq_none
Turing
.
apply_get_eval
Turing
.
eval_get_eval
Turing
.
eval_eq_eval
Turing
.
eval_dom_iff
source
theorem
Part
.
eq_of_get_eq_get
{σ :
Type
u_1}
{a b :
Part
σ
}
(ha :
a
.
Dom
)
(hb :
b
.
Dom
)
(hab :
a
.
get
ha
=
b
.
get
hb
)
:
a
=
b
source
theorem
Part
.
eq_iff_of_dom
{σ :
Type
u_1}
{a b :
Part
σ
}
(ha :
a
.
Dom
)
(hb :
b
.
Dom
)
:
a
.
get
ha
=
b
.
get
hb
↔
a
=
b
source
theorem
Part
.
get_eq_get
{σ :
Type
u_1}
{a b :
Part
σ
}
(ha :
a
.
Dom
)
(hb :
a
.
get
ha
∈
b
)
:
a
=
b
source
theorem
Turing
.
dom_of_apply_eq_none
{σ :
Type
u_1}
{f :
σ
→
Option
σ
}
{s :
σ
}
(hf :
f
s
=
none
)
:
s
∈
eval
f
s
source
@[simp]
theorem
Turing
.
apply_get_eval
{σ :
Type
u_1}
{f :
σ
→
Option
σ
}
{s :
σ
}
(H :
(
eval
f
s
)
.
Dom
)
:
f
(
(
eval
f
s
)
.
get
H
)
=
none
source
theorem
Turing
.
eval_get_eval
{σ :
Type
u_1}
{f :
σ
→
Option
σ
}
{s :
σ
}
(H :
(
eval
f
s
)
.
Dom
)
:
eval
f
(
(
eval
f
s
)
.
get
H
)
=
eval
f
s
source
theorem
Turing
.
eval_eq_eval
{σ :
Type
u_1}
{f :
σ
→
Option
σ
}
{a a' :
σ
}
(H :
f
a
=
some
a'
)
:
eval
f
a
=
eval
f
a'
source
theorem
Turing
.
eval_dom_iff
{σ :
Type
u_1}
{f :
σ
→
Option
σ
}
{s :
σ
}
:
(∃ (
n
:
ℕ
),
(fun (
x
:
Option
σ
) =>
x
.
bind
f
)
^[
n
+
1
]
(
some
s
)
=
none
)
↔
(
eval
f
s
)
.
Dom