Documentation

FormalConjectures.ForMathlib.Combinatorics.SimpleGraph.GraphConjectures.Domination

Dominating sets #

def SimpleGraph.IsDominating {α : Type u_1} (G : SimpleGraph α) (D : Set α) :

A set D is a dominating set for G if every vertex of G is either in D or adjacent to a vertex of D.

Equations
Instances For
    structure SimpleGraph.IsNDominatingSet {α : Type u_1} {G : SimpleGraph α} (n : ) (D : Finset α) :

    An n-dominating set is a dominating set with n vertices.

    Instances For
      theorem SimpleGraph.isNDominatingSet_iff {α : Type u_1} {G : SimpleGraph α} (n : ) (D : Finset α) :

      Domination number #

      noncomputable def SimpleGraph.dominationNumber {α : Type u_1} (G : SimpleGraph α) :

      The domination number of a graph G is the minimum size of a dominating set. It is 0 if there are no vertices.

      Equations
      Instances For

        Total domination #

        def SimpleGraph.IsTotalDominating {α : Type u_1} (G : SimpleGraph α) (D : Set α) :

        A set D is a total dominating set if every vertex is adjacent to a vertex in D.

        Equations
        Instances For
          structure SimpleGraph.IsTotalNDominatingSet {α : Type u_1} {G : SimpleGraph α} (n : ) (D : Finset α) :

          An n-total dominating set is a total dominating set with n vertices.

          Instances For
            noncomputable def SimpleGraph.totalDominationNumber {α : Type u_1} (G : SimpleGraph α) :

            The total domination number of G.

            Equations
            Instances For

              Connected domination #

              def SimpleGraph.IsConnectedDominating {α : Type u_1} (G : SimpleGraph α) (D : Set α) :

              A set is a connected dominating set if it is dominating and induces a connected subgraph.

              Equations
              Instances For
                noncomputable def SimpleGraph.connectedDominationNumber {α : Type u_1} (G : SimpleGraph α) :

                The connected domination number of G.

                Equations
                Instances For

                  Independent domination #

                  def SimpleGraph.IsIndepDominating {α : Type u_1} (G : SimpleGraph α) (D : Set α) :
                  Equations
                  Instances For
                    structure SimpleGraph.IsNIndepDominatingSet {α : Type u_1} {G : SimpleGraph α} (n : ) (D : Finset α) :
                    Instances For
                      noncomputable def SimpleGraph.indepDominationNumber {α : Type u_1} (G : SimpleGraph α) :
                      Equations
                      Instances For

                        Vertex and edge covers #

                        def SimpleGraph.IsVertexCover {α : Type u_1} (G : SimpleGraph α) (C : Set α) :

                        A set of vertices is a vertex cover if every edge has an endpoint in it.

                        Equations
                        Instances For
                          noncomputable def SimpleGraph.vertexCoverNumber {α : Type u_1} (G : SimpleGraph α) :

                          The vertex cover number of G.

                          Equations
                          Instances For
                            def SimpleGraph.IsEdgeCover {α : Type u_1} (G : SimpleGraph α) (M : Set (Sym2 α)) :

                            A set of edges is an edge cover if every vertex is incident to some edge in it.

                            Equations
                            Instances For
                              noncomputable def SimpleGraph.edgeCoverNumber {α : Type u_1} (G : SimpleGraph α) :

                              The minimum edge cover number of G.

                              Equations
                              Instances For

                                Edge domination #

                                def SimpleGraph.edgesAdjacent {α : Type u_1} (e e' : Sym2 α) :
                                Equations
                                Instances For
                                  def SimpleGraph.IsEdgeDominating {α : Type u_1} (G : SimpleGraph α) (M : Set (Sym2 α)) :
                                  Equations
                                  Instances For
                                    structure SimpleGraph.IsNEdgeDominatingSet {α : Type u_1} {G : SimpleGraph α} (n : ) (M : Finset (Sym2 α)) :
                                    Instances For
                                      noncomputable def SimpleGraph.edgeDominationNumber {α : Type u_1} (G : SimpleGraph α) :
                                      Equations
                                      Instances For