Documentation

FormalConjectures.ErdosProblems.«996»

Erdős Problem 996 #

Reference:

noncomputable def fourierPartial {T : } [hT : Fact (0 < T)] (f : (MeasureTheory.Lp 2 AddCircle.haarAddCircle)) (k : ) :
Equations
Instances For
    theorem Erdos996.erdos_996.log3 :
    sorry ∃ (C : ), 0 < C ∀ (f : (MeasureTheory.Lp 2 AddCircle.haarAddCircle)) (n : ), IsLacunary n((fun (k : ) => (MeasureTheory.eLpNorm (fourierPartial f k) 2 AddCircle.haarAddCircle).toReal) =O[Filter.atTop] fun (k : ) => 1 / Real.log (Real.log (Real.log k)) ^ C) → ∀ᵐ (x : AddCircle 1), Filter.Tendsto (fun (N : ) => (∑ kFinset.range N, f (n k x)) / N) Filter.atTop (nhds ( (t : AddCircle 1), f t AddCircle.haarAddCircle))

    Does there exists a positive constant C such that for all f ∈ L²[0,1] and all lacunary sequences n, if ‖f - fₖ‖₂ = O(1 / log log log k ^ C), then for almost every x, lim ∑ k ∈ Finset.range N, f (n k • x)) / N = ∫ t, f t ∂t?

    theorem Erdos996.erdos_996.log2 (C : ) :
    0.5 < C∀ (f : (MeasureTheory.Lp 2 AddCircle.haarAddCircle)) (n : ), IsLacunary n((fun (k : ) => (MeasureTheory.eLpNorm (fourierPartial f k) 2 AddCircle.haarAddCircle).toReal) =O[Filter.atTop] fun (k : ) => 1 / Real.log (Real.log k) ^ C) → ∀ᵐ (x : AddCircle 1), Filter.Tendsto (fun (N : ) => (∑ kFinset.range N, f (n k x)) / N) Filter.atTop (nhds ( (t : AddCircle 1), f t AddCircle.haarAddCircle))

    The following theorem is proved in [Ma66].