Erdős Problem 996 #
Reference:
- erdosproblems.com/996
- [Er49d] Erdös, P. "On the strong law of large numbers." Transactions of the American Mathematical Society 67.1 (1949): 51-56.
- [Ma66] Matsuyama, Noboru. "On the strong law of large numbers." Tohoku Mathematical Journal, Second Series 18.3 (1966): 259-269.
noncomputable def
fourierPartial
{T : ℝ}
[hT : Fact (0 < T)]
(f : ↥(MeasureTheory.Lp ℂ 2 AddCircle.haarAddCircle))
(k : ℕ)
:
Equations
- fourierPartial f k x = ∑ i ∈ Finset.Icc (-↑k) ↑k, fourierCoeff ↑↑f ↑k • (fourier i) x
Instances For
theorem
Erdos996.erdos_996.log3 :
sorry ↔ ∃ (C : ℝ),
0 < C ∧ ∀ (f : ↥(MeasureTheory.Lp ℂ 2 AddCircle.haarAddCircle)) (n : ℕ → ℕ),
IsLacunary n →
((fun (k : ℕ) =>
(MeasureTheory.eLpNorm (fourierPartial f k) 2 AddCircle.haarAddCircle).toReal) =O[Filter.atTop] fun (k : ℕ) => 1 / Real.log (Real.log (Real.log ↑k)) ^ C) →
∀ᵐ (x : AddCircle 1), Filter.Tendsto (fun (N : ℕ) => (∑ k ∈ Finset.range N, ↑↑f (n k • x)) / ↑N) Filter.atTop
(nhds (∫ (t : AddCircle 1), ↑↑f t ∂AddCircle.haarAddCircle))
Does there exists a positive constant C such that for all f ∈ L²[0,1] and all lacunary
sequences n, if ‖f - fₖ‖₂ = O(1 / log log log k ^ C), then for almost every x,
lim ∑ k ∈ Finset.range N, f (n k • x)) / N = ∫ t, f t ∂t?
theorem
Erdos996.erdos_996.log2
(C : ℝ)
:
0.5 < C →
∀ (f : ↥(MeasureTheory.Lp ℂ 2 AddCircle.haarAddCircle)) (n : ℕ → ℕ),
IsLacunary n →
((fun (k : ℕ) => (MeasureTheory.eLpNorm (fourierPartial f k) 2 AddCircle.haarAddCircle).toReal) =O[Filter.atTop] fun (k : ℕ) => 1 / Real.log (Real.log ↑k) ^ C) →
∀ᵐ (x : AddCircle 1), Filter.Tendsto (fun (N : ℕ) => (∑ k ∈ Finset.range N, ↑↑f (n k • x)) / ↑N) Filter.atTop
(nhds (∫ (t : AddCircle 1), ↑↑f t ∂AddCircle.haarAddCircle))
The following theorem is proved in [Ma66].