Erdős Problem 982 #
Reference: erdosproblems.com/982
theorem
Erdos982.erdos_982
(n : ℕ)
(hn : 3 ≤ n)
(p : Fin n → EuclideanSpace ℝ (Fin 2))
(hp : Function.Injective p)
(hp' : EuclideanGeometry.IsConvexPolygon p)
:
If $n$ distinct points in $\mathbb{R}^2$ form a convex polygon then some vertex has at least $\lfloor\frac{n}{2}\rfloor$ different distances to other vertices.