Documentation

FormalConjectures.ErdosProblems.«971»

Erdős Problem 971 #

Reference: erdosproblems.com/971

noncomputable def Erdos971.leastCongruentPrime (a d : ) :

leastCongruentPrime a d is the least prime congruent to a modulo d.

Equations
Instances For
    theorem Erdos971.erdos_971 :
    sorry c > 0, C > 0, ∀ᶠ (d : ) in Filter.atTop, C * d.totient {aFinset.Iio d | a.Coprime d (leastCongruentPrime a d) > (1 + c) * d.totient * Real.log d}.card

    Let p(a, d) be the least prime congruent to a (mod d). Does there exist a constant c > 0 such that for all large d, p(a, d) > (1 + c) * φ(d) * log d for ≫ φ(d) many values of a?

    theorem Erdos971.erdos_971.variants.infinite_sequence :
    c > 0, C > 0, {d : | C * d.totient {aFinset.Iio d | a.Coprime d (leastCongruentPrime a d) > (1 + c) * d.totient * Real.log d}.card}.Infinite

    Erdős [Er49c] proved that the statement in erdos_971 holds for infinitely many values of d.

    [Er49c] Erdős, P., On some applications of Brun's method. Acta Univ. Szeged. Sect. Sci. Math. (1949), 57--63.

    theorem Erdos971.erdos_971.variants.many_small (ε : ) :
    ε > 0C > 0, ∀ᶠ (d : ) in Filter.atTop, C * d.totient {aFinset.Iio d | a.Coprime d (leastCongruentPrime a d) < ε * d.totient * Real.log d}.card

    Erdős [Er49c] proved that for any ε > 0 we have p(a, d) < ε * φ(d) * log d for ≫_ε φ(d) many values of a (for all large d).

    [Er49c] Erdős, P., On some applications of Brun's method. Acta Univ. Szeged. Sect. Sci. Math. (1949), 57--63.