Documentation

FormalConjectures.ErdosProblems.«949»

Erdős Problem 949 #

Reference: erdosproblems.com/949

theorem Erdos949.erdos_949 :
(∀ (S : Set ), (∀ aS, bS, a + bS)ASet.univ \ S, Cardinal.mk A = Cardinal.continuum A + A A) sorry

Let $S\sub \mathbb{R}$ be a set containing no solutions to $a + b = c$. Must there be a set $A\sub \mathbb{R}∖S$ of cardinality continuum such that $A + A \sub A$?

theorem Erdos949.erdos_949.variants.sidon :
(∀ (S : Set ), IsSidon SASet.univ \ S, Cardinal.mk A = Cardinal.continuum A + A A) sorry

Let $S\sub \mathbb{R}$ be a Sidon set. Must there be a set $A\sub \mathbb{R}∖S$ of cardinality continuum such that $A + A \sub A$?