Documentation

FormalConjectures.ErdosProblems.«949»

Erdős Problem 949 #

Reference: erdosproblems.com/949

theorem Erdos949.erdos_949 :
sorry ∀ (S : Set ), (∀ aS, bS, a + bS)AS, Cardinal.mk A = Cardinal.continuum A + A S

Let $S \subseteq \mathbb{R}$ be a set containing no solutions to $a + b = c$. Must there be a set $A \subseteq \mathbb{R} \setminus S$ of cardinality continuum such that $A + A \subseteq \mathbb{R}\setminus S$?

Let $S\sub \mathbb{R}$ be a Sidon set. Must there be a set $A\sub \mathbb{R}∖S$ of cardinality continuum such that $A + A \sub \mathbb{R}∖S$?