Documentation

FormalConjectures.ErdosProblems.«942»

Erdős Problem 942 #

Reference: erdosproblems.com/942

Let $h(n)$ count the number of powerful integers in $[n^2, (n + 1)^2)$.

Equations
Instances For
    theorem Erdos942.erdos_942 :
    (∃ c > 0, ∃ (o : ), o =o[Filter.atTop] 1 ∀ (n : ), (erdos_942.h n) < Real.log n ^ (c + o n) {n : | (erdos_942.h n) > Real.log n ^ (c - o n)}.Infinite) sorry

    Is there some constant $c > 0$ such that $h(n) < (\log n)^{c + o(1)}$ and, for infinitely many $n$, $h(n) > (\log n)^{c - o(1)}$.

    It is not hard to prove that $\limsup h(n) = \infty$.

    theorem Erdos942.erdos_942.variants.density :
    ∃ (δ : ), ∀ (l : ), {n : | h n = l}.HasDensity (δ l) ∑' (l : ), δ l = 1

    It is not hard to prove that the density $δ_l$ of integers for which $h(n) = l$ exists and satisfies $$\sum_l δ_l = 1$$.