Documentation

FormalConjectures.ErdosProblems.«931»

Erdős Problem 931 #

Reference: erdosproblems.com/931

theorem erdos_931 :
(∀ (k₁ k₂ : ), k₂ 3k₂ k₁{(n₁, n₂) : × | n₁ + k₁ n₂ (∏ iFinset.Icc 1 k₁, (n₁ + i)).primeFactors = (∏ jFinset.Icc 1 k₂, (n₂ + j)).primeFactors}.Finite) sorry

Let $k_1 \geq k_2 \geq 3$. Are there only finitely many $n_2\geq n_1 + k_1$ such that $$ \prod_{1\leq i\leq k_1}(n_1 + i)\ \text{and}\ \prod_{1\leq j\leq k_2} (n_2 + j) $$ have the same prime factors?

theorem erdos_931.variants.additional_condition :
(∀ (k₁ k₂ : ), k₂ 3k₂ k₁{(n₁, n₂) : × | n₁ + k₁ n₂ n₂ 2 * (n₁ + k₁) (∏ iFinset.Icc 1 k₁, (n₁ + i)).primeFactors = (∏ jFinset.Icc 1 k₂, (n₂ + j)).primeFactors}.Finite) sorry

Erdős thought perhaps if the two products have the same factors then $n_2 > 2(n_1 + k_1)$. It is an open question whether this is true when allowing a finite number of counterexamples.

theorem erdos_931.variants.additional_condition_nonempty :
∃ (k₁ : ) (k₂ : ) (_ : k₂ k₁) (_ : 3 k₂), {(n₁, n₂) : × | n₁ + k₁ n₂ n₂ 2 * (n₁ + k₁) (∏ iFinset.Icc 1 k₁, (n₁ + i)).primeFactors = (∏ jFinset.Icc 1 k₂, (n₂ + j)).primeFactors}.Nonempty

In fact there exist counterexamples, like this one found by AlphaProof.

theorem erdos_931.variants.exists_prime (k₁ k₂ n₁ n₂ : ) (h₁ : k₂ k₁) (h₂ : 3 k₂) (h₃ : n₁ + k₁ n₂) (h₄ : (∏ iFinset.Icc 1 k₁, (n₁ + i)).primeFactors = (∏ jFinset.Icc 1 k₂, (n₂ + j)).primeFactors) :
∃ (p : ), Nat.Prime p n₁ p p n₂

Erdős was unable to prove that if the two products have the same factors then there must exist a prime between $n_1$ and $n_2$.