Documentation

FormalConjectures.ErdosProblems.«930»

Erdős Problem 930 #

Reference: erdosproblems.com/930

$n$ is a perfect power if there exist natural numbers $m$ and $l$ such that $1 < l$ and $m^l = n$.

Equations
Instances For
    theorem Erdos930.erdos_930 :
    sorry r > 0, ∃ (k : ), ∀ (I₁ I₂ : Fin r), (∀ (i : Fin r), 0 < I₁ i I₁ i + k I₂ i + 1)(∀ (i j : Fin r), i < jI₂ i < I₁ j)¬IsPower (∏ i : Fin r, mFinset.Icc (I₁ i) (I₂ i), m)

    Is it true that, for every $r$, there is a $k$ such that if $I_1,\ldots,I_r$ are disjoint intervals of consecutive integers, all of length at least $k$, then $$ \prod_{1\leq i\leq r}\prod_{m\in I_i}m $$ is not a perfect power?

    Returns the least prime satisfying $k \le p$

    Equations
    Instances For
      theorem Erdos930.erdos_930.variant.consecutive_strong (k l n : ) :
      3 k2 lnextPrime k n + k∃ (p : ), k p Nat.Prime p ¬l (∏ mFinset.Icc (n + 1) (n + k), m).factorization p

      Let $k$, $l$, $n$ be integers such that $k \ge 3$, $l \ge 2$ and $n + k \ge p^{(k)}$, where $p^{(k)}$ is the least prime satisfying $p^{(k)} \ge k$. Then there is a prime $p \ge k$ for which $l$ does not divide the multiplicity of the prime factor $p$ in $(n + 1) \ldots (n + k)$.

      Theorem 2 from [ErSe75].

      [ErSe75] Erdős, P. and Selfridge, J. L., The product of consecutive integers is never a power. Illinois J. Math. (1975), 292-301.

      theorem Erdos930.erdos_930.variant.consecutive_integers (n k : ) :
      0 n2 k¬IsPower (∏ mFinset.Icc (n + 1) (n + k), m)

      Erdos and Selfridge [ErSe75] proved that the product of consecutive integers is never a power (establishing the case $r=1$).

      Theorem 1 from [ErSe75].

      It is implied from erdos_930.variant.consecutive_strong.

      [ErSe75] Erdős, P. and Selfridge, J. L., The product of consecutive integers is never a power. Illinois J. Math. (1975), 292-301.