Erdős Problem 899 #
Reference: erdosproblems.com/899
theorem
erdos_899 :
(∀ (A : Set ℕ),
A.Infinite →
Filter.Tendsto (fun (N : ℕ) => ↑(A.bdd N).ncard / ↑N) Filter.atTop (nhds 0) →
Filter.Tendsto (fun (N : ℕ) => ↑((A - A).bdd N).ncard / ↑(A.bdd N).ncard) Filter.atTop Filter.atTop) ↔ True
Let $A\subseteq\mathbb{N}$ be an infinite set such that $|A\cap \{1, ..., N\}| = o(N)$. Is it true that $$ \limsup_{N\to\infty}\frac{|(A - A)\cap \{1, ..., N\}|}{|A \cap \{1, ..., N\}|} = \infty? $$
The answer is yes, proved by Ruzsa [Ru78].
[Ru78] Ruzsa, I. Z., On the cardinality of {$A+A$}\ and {$A-A$}. (1978), 933--938.