Erdős Problem 897 #
Reference: erdosproblems.com/897
Let $f(n)$ be an additive function (so that $f(ab)=f(a)+f(b)$ if $(a,b)=1$ such that $\limsup_{p,k} f(p^k) \log(p^k) = ∞$. Is it true that $\limsup_n (f(n+1)−f(n))/ \log n = ∞$?
Let $f(n)$ be an additive function (so that $f(ab)=f(a)+f(b)$ if $(a,b)=1$) such that $\limsup_{p,k} f(p^k) \log(p^k) = ∞$. Is it true that $\limsup_n f(n+1)/ f(n) = ∞$?
Wirsing [Wi70] proved that if $|f(n+1)−f(n)| ≤ C$ then $f(n) = c \log n + O(1)$ for some constant $c$.
[Wi70] Wirsing, E., A characterization of $\log n$ as an additive arthemetic function. Symposia Math. (1970), 45-47.
Let $f(n)$ be an additive function (so that $f(ab)=f(a)+f(b)$ if $(a,b)=1$) such that $\limsup_{p,k} f(p^k) \log(p^k) = ∞$ and $f(p^k) = f(p)$ or $f(p^k) = kf(p)$. Is it true that $\limsup_n (f(n+1)−f(n))/ \log n = ∞$?
Let $f(n)$ be an additive function (so that $f(ab)=f(a)+f(b)$ if $(a,b)=1$) such that $\limsup_{p,k} f(p^k) \log(p^k) = ∞$ and $f(p^k) = f(p)$ or $f(p^k) = kf(p)$. Is it true that $\limsup_n f(n+1)/f(n) = ∞$?