Documentation

FormalConjectures.ErdosProblems.«897»

Erdős Problem 897 #

Reference: erdosproblems.com/897

theorem erdos_897.parts.i :
(∀ (f : ), (∀ a > 0, b > 0, a.Coprime bf (a * b) = f a + f b)Filter.limsup (fun (x : × ) => match x with | (p, k) => (f (p ^ k)) / (Real.log (p ^ k))) (Filter.atTop Filter.principal {(p, k) : × | Nat.Prime p}) = Filter.limsup (fun (n : ) => ((f (n + 1)) - (f n)) / (Real.log n)) Filter.atTop = ) sorry

Let $f(n)$ be an additive function (so that $f(ab)=f(a)+f(b)$ if $(a,b)=1$ such that $\limsup_{p,k} f(p^k) \log(p^k) = ∞$. Is it true that $\limsup_n (f(n+1)−f(n))/ \log n = ∞$?

theorem erdos_897.parts.ii :
(∀ (f : ), (∀ a > 0, b > 0, a.Coprime bf (a * b) = f a + f b)Filter.limsup (fun (x : × ) => match x with | (p, k) => (f (p ^ k)) / (Real.log (p ^ k))) (Filter.atTop Filter.principal {(p, k) : × | Nat.Prime p}) = Filter.limsup (fun (n : ) => (f (n + 1)) / (f n)) Filter.atTop = ) sorry

Let $f(n)$ be an additive function (so that $f(ab)=f(a)+f(b)$ if $(a,b)=1$) such that $\limsup_{p,k} f(p^k) \log(p^k) = ∞$. Is it true that $\limsup_n f(n+1)/ f(n) = ∞$?

theorem erdos_897.variants.log_growth (f : ) (hf : a > 0, b > 0, a.Coprime bf (a * b) = f a + f b) (C : ) (hf' : ∀ (n : ), |f (n + 1) - f n| C) :
∃ (c : ) (O : ), ∀ (n : ), |f n - c * Real.log n| O

Wirsing [Wi70] proved that if $|f(n+1)−f(n)| ≤ C$ then $f(n) = c \log n + O(1)$ for some constant $c$.

[Wi70] Wirsing, E., A characterization of $\log n$ as an additive arthemetic function. Symposia Math. (1970), 45-47.

theorem erdos_897.variants.parts.i :
(∀ (f : ), (∀ a > 0, b > 0, a.Coprime bf (a * b) = f a + f b)Filter.limsup (fun (x : × ) => match x with | (p, k) => (f (p ^ k)) / (Real.log (p ^ k))) (Filter.atTop Filter.principal {(p, k) : × | Nat.Prime p}) = ((∀ (k p : ), Nat.Prime pf (p ^ k) = f p) ∀ (k p : ), Nat.Prime pf (p ^ k) = k * f p) → Filter.limsup (fun (n : ) => ((f (n + 1)) - (f n)) / (Real.log n)) Filter.atTop = ) sorry

Let $f(n)$ be an additive function (so that $f(ab)=f(a)+f(b)$ if $(a,b)=1$) such that $\limsup_{p,k} f(p^k) \log(p^k) = ∞$ and $f(p^k) = f(p)$ or $f(p^k) = kf(p)$. Is it true that $\limsup_n (f(n+1)−f(n))/ \log n = ∞$?

theorem erdos_897.variants.parts.ii :
(∀ (f : ), (∀ a > 0, b > 0, a.Coprime bf (a * b) = f a + f b)Filter.limsup (fun (x : × ) => match x with | (p, k) => (f (p ^ k)) / (Real.log (p ^ k))) (Filter.atTop Filter.principal {(p, k) : × | Nat.Prime p}) = ((∀ (k p : ), Nat.Prime pf (p ^ k) = f p) ∀ (k p : ), Nat.Prime pf (p ^ k) = k * f p) → Filter.limsup (fun (n : ) => (f (n + 1)) / (f n)) Filter.atTop = ) sorry

Let $f(n)$ be an additive function (so that $f(ab)=f(a)+f(b)$ if $(a,b)=1$) such that $\limsup_{p,k} f(p^k) \log(p^k) = ∞$ and $f(p^k) = f(p)$ or $f(p^k) = kf(p)$. Is it true that $\limsup_n f(n+1)/f(n) = ∞$?